Skip to main content
Log in

Crystal structure of new compound (Rb,K)2Cu3(P2O7)2

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A new compound of (Rb,K)2Cu3(P2O7)2 is obtained by high-temperature reactions from a mixture of RbNO3, KNO3, Cu(NO3)2, and (NH4)4P2O7. The crystal structure was solved by direct methods and refined to R 1 = 0.056 for 5022 independent reflections. The compound belongs to a rhombic crystal system, P212121, Z = 8, a = 9.9410(7) Å, b = 13.4754(6) Å, c = 18.6353 (3) Å, and R = 0.056. The basis of the structure is a complex copper-phosphate skeleton of the composition of [Cu3(P2O7)2]2–, which can be regarded as consisting of two types of heteropolyhedral layers parallel to the (001) plane. The layers are alternated with each other, forming a frame, in the cavities of which the positions of alkali cations are located, statistically populated with K+ and Rb+ ions. Based on the refined populations of the positions of alkali cations, an exact chemical formula of the compound can be written as Rb1.28K0.72Cu3(P2O7)2. The compound is the most complex among those known to this day of the composition of A2 IB3 II(P2O7)2 (A = Li, Na, K, Rb, or Cs; B = Ni, Cu, or Zn).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shepelev, Yu.F., Lapshin, A.E., Petrova, M.A., and Novikova, A.S., Crystal structure of the LiNaZnP2O7 compound in the Li2ZnP2O7–Na2ZnP2O7 glass-forming system, Glass Phys. Chem., 2005, vol. 31, no. 5, pp. 690–693.

    Article  Google Scholar 

  2. Lapshin, A.E., Petrova, M.A., Osipova, Yu.N., Novikova, A.S., and Shepelev, Yu.F., Thermal behavior of alkali zinc phosphates, Glass Phys. Chem., 2005, vol. 31, no. 5, pp. 684–689.

    Article  Google Scholar 

  3. Shepelev, Yu.F., Lapshin, A.E., and Petrova, M.A., Crystal structure of sodium, potassium, and zinc diphosphate, NaKZnP 2 O 7, Zh. Strukt. Khim., 2006, vol. 47, no. 6, pp. 1110–1114.

    Google Scholar 

  4. Ranmohotti, S.K.G., Xunhua, M., Smith, M.K., and Hwu, S.-J., Synthesis, structure, and magnetic properties of Cs(2–x)RbxCu3P4O14 (0.0 ≤ x ≤ 0.8): A new series of copper(II) phosphates containing periodic arrays of staggered square-planar CuO4 trimers, Inorg. Chem., 2006, vol. 45, pp. 3665–3670.

    Article  Google Scholar 

  5. Lapshin, A.E., Petrova, M.A., and Shepelev, Yu.F., Crystal structure of the K2(Zn3P4O14) compound, Glass Phys. Chem., 2007, vol. 33, no. 6, pp. 590–595.

    Article  Google Scholar 

  6. Ji, L., Cai, G.M., Li, J.B., Luo, J., Liang, J.K., Zhang, J.Y., Liu, Y.H., Rao, G.H., and Chen, X.L., Crystal structure and thermal properties of compound K2Zn3(P2O7)2, Powder Diffr., 2008, vol. 23, pp. 317–322.

    Article  Google Scholar 

  7. Lapshin, A.E. and Petrova, M.A., Synthesis and crystal structure of the low-temperature modification of lithium potassium zinc diphosphate LiKZnP2O7, Glass Phys. Chem., 2009, vol. 35, no. 6, p. 637–642.

    Article  Google Scholar 

  8. Ji, L., Ma, H.W., and Liang, J.K., Lithium zincopyrophosphate Li2Zn3(P2O7)2, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2009, vol. 65, pp. 5130–5132.

    Google Scholar 

  9. Lapshin, A.E. and Petrova, M.A., Synthesis and crystal structure of the low-temperature modification of Li12Zn4(P2O7)5, Glass Phys. Chem., 2010, vol. 36, no. 1, pp. 75–79.

    Article  Google Scholar 

  10. Shvanskaya, L., Ivanova, A., Golovanov, A., Volkova, O., Zvereva, E., and Vasiliev, A., Copper rubidium diphosphate, Rb2Cu3(P2O7)2: Synthesis, crystal structure, magnetic and resonant properties, New J. Chem., 2013, vol. 37, pp. 2743–2750.

    Article  Google Scholar 

  11. Mannasova, A.A., Chernyatieva, A.P., and Krivovichev, S.V., Cs2CuP2O7, a novel low-density openframework structure based upon an augmented diamond net, Z. Kristallogr.-Cryst. Mater., 2016, vol. 231, pp. 65–70.

    Article  Google Scholar 

  12. Jahn, H.A. and Teller, E., Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy, Proc. R. Soc. London, Ser. A, 1937, vol. 161, pp. 220–235.

    Article  Google Scholar 

  13. Burns, P.C. and Hawthorne, F.C., Coordinationgeometry pathways in Cu2+ oxysalt minerals, Can. Mineral., 1995, vol. 33, pp. 889–905.

    Google Scholar 

  14. Burns, P.C. and Hawthorne, F.C., Mixed-ligand Cu2+F6 octahedra in minerals: Observed stereochemistries and Hartree–Fock calculations, Can. Mineral., 1995, vol. 33, pp. 1177–1188.

    Google Scholar 

  15. Sheldrick, G.M., A short history of SHELX, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, pp. 112–122.

    Google Scholar 

  16. Huminicki, D.M.C. and Hawthorne, F.C., The crystal chemistry of phosphate minerals, Rev. Mineral. Geochem., 2002, vol. 48, pp. 123–254.

    Article  Google Scholar 

  17. Krivovichev, S.V., Structural Crystallography of Inorganic Oxysalts, Oxford: Oxford Univ. Press, 2009.

    Book  Google Scholar 

  18. Urusov, V.S., Theoretical analysis and empirical manifestation of the distortion theorem, Z. Kristallogr., 2003, vol. 218, pp. 709–719.

    Google Scholar 

  19. Urusov, V.S., New formulation of the distortion theorem and distortion of Mn3+O6 octahedra in inorganic crystals, Dokl. Phys. Chem., 2006, vol. 408, no. 1, pp. 137–141.

    Article  Google Scholar 

  20. O’Keeffe, M., Domenges, B., and Gibbs, G.V., Ab initio molecular orbital calculations on phosphates: comparison with silicates, J. Phys. Chem., 1985, vol. 89, pp. 2304–2309.

    Article  Google Scholar 

  21. Durif, A., Crystal Chemistry of Condensed Phosphates, New York: Springer, 1995.

    Book  Google Scholar 

  22. Mackay, A.L., Crystal symmetry, Phys. Bull., 1976, vol. 1976, pp. 495–496.

    Article  Google Scholar 

  23. Mackay, A.L., On complexity, Crystallogr. Rep., 2001, vol. 46, pp. 524–526.

    Article  Google Scholar 

  24. Mackay, A.L. and Klinowski, J., Towards a grammar of inorganic structure, Comp. Math. Appl., 1986, vol. 12, pp. 803–824.

    Article  Google Scholar 

  25. Krivovichev, S.V., Topological complexity of crystal structures: quantitative approach, Acta Crystallogr., Sect. A: Found. Crystallogr., 2012, vol. 68, pp. 393–398.

    Article  Google Scholar 

  26. Krivovichev, S.V., Structural complexity of minerals: information storage and processing in the mineral world, Mineral. Mag., 2013, vol. 77, pp. 275–326.

    Article  Google Scholar 

  27. Krivovichev, S.V., Which inorganic structures are the most complex?, Angew. Chem., Int. Ed. Engl., 2014, vol. 53, pp. 654–661.

    Article  Google Scholar 

  28. Krivovichev, S.V., Structural complexity and configurational entropy of crystals, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2016, vol. 72, pp. 274–276.

    Google Scholar 

  29. Rissouli, K., Benkhouja, K., Sadel, A., Bettach, M., Zahir, M., Giorgi, M., and Pierrot, M., A mixed nickel-lithium pyrophosphate LiNi1.5P2O7, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1996, vol. 52, pp. 2960–2963.

    Google Scholar 

  30. Averbuch-Pouchot, M.T., Crystal data on Zn3Rb2(P2O7)2 and Co3Rb2(P2O7)2, Z. Kristallogr., 1985, vol. 171, pp. 113–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Krivovichev.

Additional information

Original Russian Text © S.V. Krivovichev, A.P. Chernyat’eva, 2016, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivovichev, S.V., Chernyat’eva, A.P. Crystal structure of new compound (Rb,K)2Cu3(P2O7)2 . Glass Phys Chem 42, 327–336 (2016). https://doi.org/10.1134/S1087659616040088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659616040088

Keywords

Navigation