Skip to main content
Log in

The peculiarities of relaxation processes at heating of glasses in glass transition region according to the data of mechanical relaxation spectra (Review)

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The results of study of mechanical losses by dynamic methods for silicate, borate, and chalcogenide glasses, metallic glass and glycerol at heating in the glass transition region were analyzed. Essential differences between the dynamic viscosity values η* calculated by means of the Maxwell equation based on the relaxation time at the maximum of losses (ωτ = 1) for labile states of glass, and the experimental values of η for the metastable liquid at the same temperature were revealed. The ratio η*/η was systematized in the framework of kinetic theory of glass transition and thermodynamics. An interpretation of the regularities was proposed based on the theory of dynamic properties of liquids. It was shown that different widths of spectra of relaxation times were the most probable reason of the difference between η* and η. The width of spectrum is determined by the degree of ordering of states of compared metastable liquid and glass at the same temperature; it depends on the thermal prehistory of each state. A wider spectrum of relaxation times corresponds to a more ordered state. For the considered glasses, the ratio of the temperature corresponding to viscosity value η* of the metastable liquid to the temperature of α-relaxation maximum (T α) is 1.03 ± 0.01 at T α variation from 190 to 1550 K. It is the evidence that all the relaxation frequencies, constituting both “narrow” and “broad” spectrum are associated with one and the same molecular mechanism. Mechanical losses in the metastable supercooled glycerol are described by the Maxwell equation with high precision for η values from 1013 to 105 Pa s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiao, J.C. and Pelletier, J.M., Dynamic mechanical relaxation in bulk metallic glasses, J. Mater. Sci. Technol., 2014, vol. 30, no. 6, pp. 523–545.

    Article  Google Scholar 

  2. Volkenstein, M.V. and Ptitsyn, O.B., The relaxation theory of glass transition, Dokl. Akad. Nauk SSSR, 1955, vol. 103, no. 5, pp. 795–798.

    Google Scholar 

  3. Volkenstein, M.V. and Ptitsyn, O.B., The relaxation theory of glass transition: I. The solution of the basic equation and its investigation, Zh. Tekh. Fiz., 1956, vol. 26, no. 10, pp. 2204–2222.

    Google Scholar 

  4. Nemilov, S.V., Maxwell equation and classical theories of glass transition as a basis for direct calculation of viscosity at glass transition temperature, Glass Phys. Chem., 2013, vol. 39, no. 6, pp. 609–623.

    Article  Google Scholar 

  5. Bartenev, G.M., On the relationship between the glass transition temperature of silicate glass and the rate of cooling and heating, Dokl. Akad. Nauk SSSR, 1951, vol. 76, no. 2, pp. 227–230.

    Google Scholar 

  6. Moynihan, C.T. Montrose, C.J., et al., Structural relaxation in vitreous materials, Ann. NY Acad. Sci., 1976, vol. 279, pp. 15–35.

    Article  Google Scholar 

  7. Moynihan, C.T., Easteal, A.J., Wilder, J., and Tucker, J., Dependence of the glass transition temperature on heating and cooling rate, J. Phys. Chem., 1974, vol. 78, no. 26, pp. 2673–2677.

    Article  Google Scholar 

  8. Mandel’shtam, L.I. and Leontovich, M.A., On the theory of sound absorption in liquids, Zh. Eksp. Teor. Fiz., 1937, vol. 7, no. 3, pp. 438–449.

    Google Scholar 

  9. Solov’ev, V.A., in Osnovy molekulyarnoi akustiki (Principles of Molecular Acoustics), Mikhailov, I.G., Solov’ev, V.A., and Syrnikov, Yu.P, Eds., Moscow: Nauka, 1964, pp. 236–282.

  10. Meister, S., Marhoeffer, C.J., Sciamanda, R., Cotter, L., and Litovitz, T., Ultrasonic viscoelastic properties of associated liquids, J. Chem. Phys., 1960, vol. 31, no. 5, pp. 854–870.

    Google Scholar 

  11. Litovitz, T.A. and Davis, C.M., in Physical Acoustics, Vol. II A Mason W.P., Ed., New York, Academic, 1965, pp. 281–349.

  12. Harrison, G., The Dynamic Properties of Supercooled Liquids, London: Academic, 1976.

    Google Scholar 

  13. Zdaniewsky, W.A., Rindone, G.E., and Day, D.E., The internal friction of glasses, J. Mater. Sci., 1979, vol. 14, pp. 763–775.

    Google Scholar 

  14. Nemilov, S.V., The review of possible interrelations between ionic conductivity, internal friction and the viscosity of glasses and glass forming melts within the framework of Maxwell equations, J. Non-Cryst. Solids, 2011, vol. 357, no. 4, pp. 1243–1263.

    Article  Google Scholar 

  15. Nemilov, S.V., Maxwell equation for electrical conductivity of dielectrics as the basis for direct relationship between the ionic electrical conductivity and mechanical losses in glasses: New problems of the physical chemistry of glass, Glass Phys. Chem., 2012, vol. 38, no. 1, pp. 27–40.

    Article  Google Scholar 

  16. Nemilov, S.V., Ageing kinetics and internal friction of oxide glasses, Glass Sci. Technol., 2005, vol. 78, no. 6, pp. 269–278.

    Google Scholar 

  17. Nemilov, S.V., Structural relaxation in oxide glasses at room temperature, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B, 2007, vol. 48, no. 4, pp. 291–295.

    Google Scholar 

  18. Nemilov, S.V., The results of application of Maxwell’s equations in glass science, Glass Phys. Chem., 2014, vol. 40, no. 5, pp. 473–485.

    Article  Google Scholar 

  19. Postnikov, V.S., Fizika i khimiya tverdogo sostoyaniya (Physics and Chemistry of Solid State), Moscow: Metallurgy, 1978.

    Google Scholar 

  20. Lillie, H.R., Stress release in glass: A phenomenon involving viscosity as a variable with time, J. Am. Ceram. Soc., 1936, vol. 19, no. 1, pp. 45–54.

    Article  Google Scholar 

  21. Tropin, T.V., Schulz, G., Schmelzer, J.W.P., and Schick, C., Heat capacity measurements and modeling of polystyrene glass transition in a wide range of cooling rates, J. Non-Cryst. Solids, 2015, vol. 409, no. 1, pp. 63–75.

    Article  Google Scholar 

  22. Volkenstein, M.V., On the structural and kinetic characteristics of the vitreous state, in Stekloobraznoe sostoyanie (Proc. 3rd All-Union Conference on the Vitreous State, Leningrad, November 16–20, 1959), PoraiKoshitz, E.A., Ed., Leningrad: Akad. Nauk SSSR, 1960, pp. 132–138.

    Google Scholar 

  23. Garden, J.-L., Guillow, H., Richard, J., and Wondraczek, L., Affinity and its derivatives in the glass transition process, J. Chem. Phys., 2012, vol. 137, no. 2, p. 024505.

    Article  Google Scholar 

  24. Macedo, P.B., Simmons, J.H., and Haller, W., Spectrum of relaxation times and fluctuation theory: Ultrasonic studies on an alkali-borosilicate melt, Phys. Chem. Glasses, 1968, vol. 9, no. 5, pp. 156–164.

    Google Scholar 

  25. Balashov, Yu.S., Andreev, I.V., Mironova, M.L., and Chernyshova, G.L., High-temperature mechanical relaxation in phase-separated sodium borosilicate glasses, Fiz. Khim. Stekla, 1978, vol. 4, no. 1, pp. 116–117.

    Google Scholar 

  26. MDL®SciGlass-7.8: Database, Institute of Theoretical Chemistry, Shrewsbury, MA, 2012.

  27. Leko, V.K. and Mazurin, O.V., Svoistva kvartsevogo stekla (Properties of Silica Glass), Leningrad: Nauka, 1985.

    Google Scholar 

  28. Loryan, S.G., Kostanyan, K.A., Saringyulyan, R.S., Kafyrov, V.M., and Bagdasaryan, E.Kh., Viscosity of silica glasses in the softening range, Elektron.Tekh., Ser. 6: Mater., 1976, no. 2, pp. 53–59.

    Google Scholar 

  29. Andreev, I.V., Balashov, Yu.S., and Ivanov, N.V., Hightemperature internal friction of some stabilized oxide glasses, Fiz. Khim. Stekla, 1981, vol. 7, no. 3, pp. 371–373.

    Google Scholar 

  30. Nemilov, S.V., Relaxation processes in inorganic melts and glasses: an elastic continuum model as a promising basis for the description of the viscosity and electrical conductivity, Glass Phys. Chem., 2010, vol. 36, no. 3, pp. 253–285.

    Article  Google Scholar 

  31. Mazurin, O.V. and Potselueva, L.N., Determination of glass transition temperature from the temperature dependences of viscosity of glass forming melts, Fiz. Khim. Stekla, 1978, vol. 4, no. 5, pp. 570–580.

    Google Scholar 

  32. Andreev, I.V., Balashov, Yu.S., and Mazurin, O.V., The study of rheological properties of window glass by means of dynamic mechanic method, Fiz. Khim. Stekla, 1980, vol. 6, no. 2, pp. 203–210.

    Google Scholar 

  33. Bartenev, G.M. and Lomovskoi, V.A., Relaxation processes in alkali-silicate plate glass and their structure origin, Neorg. Mater., 1993, vol. 29, no. 7, pp. 997–1003.

    Google Scholar 

  34. Bartenev, G.M. and Lomovskoi, V.A., Relaxation properties of alkali silicate glasses from mechanical measurements, Neorg. Mater., 1996, vol. 32, no. 5, pp. 607–619.

    Google Scholar 

  35. Andreev, I.V., Balashov, Yu.S., and Lomovskoi, V.A., High-temperature mechanical relaxation in sodium borate glasses, Fiz. Khim. Stekla, 1984, vol. 10, no. 4, pp. 505–507.

    Google Scholar 

  36. Jansen-Falkenburg, I.A., van Gemert, W.J.Th., and Stevels, J.M., Mechanical relaxation in vitreous borates in the transition range, J. Non-Cryst. Solids, 1978, vol. 29, no. 1, pp. 119–129.

    Article  Google Scholar 

  37. Lomovskoi, V.A., Andreev, I.V., and Balashov, Yu.S., Internal friction in the region of glass transition of lead borate glasses, Fiz. Khim. Stekla, 1984, vol. 10, no. 4, pp. 503–504.

    Google Scholar 

  38. Bilanich, V.S. and Gorvat, A.A., High-temperature relaxation transition in arsenic chalcogenides, Fiz. Khim. Stekla, 1998, vol. 24, no. 6, pp. 825–829.

    Google Scholar 

  39. Nemilov, S.V., Viscosity and elastic properties of melts and glasses of As–S system and their valence structure, Fiz. Khim. Stekla, 1979, vol. 5, no. 4, pp. 398–409.

    Google Scholar 

  40. Chang, S.S., Bestul, A.B., and Horman, J.A., Critical configurational entropy of glass transition, Trav. VII Congress Int. du Verre, Bruxelles, 1965, 26 1.13.

    Google Scholar 

  41. Wang, W.H., Dong, C., and Shek, C.H., Bulk metallic glasses, Mater. Sci. Eng., 2004, vol. 44, pp. 45–89.

    Article  Google Scholar 

  42. Khonik, V.A., Understanding of the structural relaxation of metallic glasses within the framework of the interstitialcy theory, Metals, 2015, vol. 5, no. 2, pp. 504–529.

    Article  Google Scholar 

  43. Khonik, V.A., Internal friction of metallic glasses: mechanisms and conditions of their realization, J. Phys. IV, 1996, vol. 6, no. C8, pp. 591–600.

    Google Scholar 

  44. Spivak, L.V. and Khonik, V.A., On the nature of lowtemperature anomalies of inelastic properties of metal glasses, Zh. Tekh. Fiz., 1997, vol. 67, no. 10, pp. 35–46.

    Google Scholar 

  45. Damson, B., Weller, M., Feuerbacher, M., Grushko, B., and Urban, K., Mechanical spectroscopy of i-Al–Pd–Mn and d-Al–Ni–Co, Mater. Sci. Eng., 2000, vols. 294–296, pp. 806–809.

    Article  Google Scholar 

  46. Khonik, V.A., Mitrofanov, Yu.P., Makarov, A.S., Konchakov, R.A., Afonin, G.V., and Tsyplakov, A.N., Structural relaxation and shear softening of Pdand Zrbased bulk metallic glasses near the glass transition, J. Alloys Compd., 2015, vol. 628, pp. 27–31.

    Article  Google Scholar 

  47. Scarfone, R. and Sinning, H.-R., A mechanical spectroscopy study of the Zr69.5Cu12Ni11Al7.5 alloy, J. Alloys Compd., 2000, vol. 310, nos. 1–2, pp. 229–232.

    Article  Google Scholar 

  48. Wide, G., Gorler, G.P., and Willnecker, R., Calorimetric, thermomechanical, and rheological characterizations of bulk glass-forming Pd40Ni40P20, J. Appl. Phys., 2000, vol. 87, no. 3, pp. 1141–1152.

    Article  Google Scholar 

  49. Duine, P.A., Sietsma, J., and Beukel, A., Defect production and annihilation near equilibrium in amorphous Pd40Ni40P20 investigated from viscosity data, Acta Metall. Mater., 1992, vol. 40, no. 4, pp. 743–751.

    Article  Google Scholar 

  50. Volkert, C.A. and Spaepen, F., Viscosity and structure relaxation in Pd40Ni40P19Si1, Mater. Sci. Eng., 1988, vol. 97, pp. 449–452.

    Article  Google Scholar 

  51. Mazurin, O.V., Steklovanie (The Glass Transition), Leningrad: Nauka, 1985.

    Google Scholar 

  52. Mitrofanov, Yu.P., Peterlechner, M., Binkowski, I., Zadorozhnyy, M.Yu., Golovin, I.S., Divinski, S.V., and Wilde, G., The impact of elastic and plastic strain on relaxation and crystallization of Pd–Ni–P-based bulk metallic glasses, Acta Mater., 2015, vol. 90, pp. 318–329.

    Article  Google Scholar 

  53. Sinning, H.-R., Observation of the glass transition of metallic glasses by low-frequency internal friction measurements with a collette pendulum, Mater. Sci. Forum, 1993, vols. 119–121, pp. 535–540.

    Article  Google Scholar 

  54. Wei Hua Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog. Mater. Sci., 2012, vol. 57, no. 3, pp. 487–656.

    Article  Google Scholar 

  55. Qiao, J., Casalini, R., Pelletier, J.-M., and Kato, H., Characteristics of the structural and Johari–Goldstein relaxations in Pd-based metallic glass-forming liquids, J. Phys. Chem. B, 2014, vol. 118, no. 13, p. 3720–3730.

    Article  Google Scholar 

  56. Schröter, K., Wilde, G., Willnecker, R., Weiss, M., Samwer, K., and Donth, E., Shear modulus and compliance in the range of the dynamic glass transition for metallic glasses, Eur. Phys. J. B, 1998, vol. 5, no. 1, pp. 1–5.

    Article  Google Scholar 

  57. Tammann, G. and Hesse, W., Die Abhängigkeit der Viscosität von der Temperatur bei unterkühlter Flüssigkeiten, Zs. Anorg. Allg. Chem., 1926, vol. 156, no. 4, pp. 245–257.

    Article  Google Scholar 

  58. Parks, G.S. and Gilkey, W., Studies on glass. Some viscosity data on liquid glucose and glucose-glycerol solutions, J. Phys. Chem., 1928, vol. 33, no. 9, pp. 1428–1437.

    Article  Google Scholar 

  59. Laughlin, W.T., Viscous flow and volume relaxation in simple glass-forming liquids, Sc. D. Thesis, Cambridge: Massachusetts Inst. Technol., 1969.

    Google Scholar 

  60. Kobeko, P.P., Kuvshinskii, E.V., and Shishkin, N.P., The study of amorphous state. XIII. Viscosity, electrical conductivity and dielectric losses in alcohols and glycerol, Zh. Tekh. Fiz., 1938, vol. 8, no. 8, pp. 715–724.

    Google Scholar 

  61. Piccirelli, R. and Litovitz, T.A., Ultrasonic shear and compressional relaxation in liquid glycerol, J. Acoust. Soc. Am., 1957, vol. 29, no. 9, pp. 1009–1020.

    Article  Google Scholar 

  62. Schröter, K. and Donth, E., Viscosity and shear response at the dynamic glass transition of glycerol, J. Chem. Phys., 2000, vol. 113, no. 20, pp. 9101–9108.

    Article  Google Scholar 

  63. Samatowicz, D., Kulik, A., and Benoit, W., Investigation of glycerol phase transition by the internal friction method, Mater. Sci. Forum, 1993, vols. 119–121, pp. 529–534.

    Article  Google Scholar 

  64. Jeong, Youn H., Nagel, S.R., and Bhattacharya, S., Ultrasonic investigation of the glass transition in glycerol, Phys. Rev. A: At., Mol., Opt. Phys., 1986, vol. 34, no. 1, pp. 602–608.

    Article  Google Scholar 

  65. Nemilov, S.V., Thermodynamic and Kinetic Aspects of the Vitreous State, Boca Raton, FL: CRC Press, 1995.

    Google Scholar 

  66. Schulz, A.K., Sur le comportement dilatometrique et la refraction de la glicerine aux etats liquide, crystallin et vitreux vers les basses temperatures, J. Chim. Phys. Phys.-Chim. Biol., 1954, vol. 51, no. 6, pp. 324–327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Nemilov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemilov, S.V., Balashov, Y.S. The peculiarities of relaxation processes at heating of glasses in glass transition region according to the data of mechanical relaxation spectra (Review). Glass Phys Chem 42, 119–134 (2016). https://doi.org/10.1134/S1087659616020139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659616020139

Keywords

Navigation