Skip to main content
Log in

Effect of feldspar addition into bioglass 45S5 composition: Crystallization kinetics and thermal transformation

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Thermal transformations of glasses with formulations derived from Bioglass 45S5 with Al2O3 (≤2.5 wt %) and K2O additions through K-feldspar were studied. Crystallization kinetics and transformations were followed-up by X-ray diffraction and differential thermal analysis. The activation energy of crystallization of Na2CaSi2O6 was found to be lower than that of Bioglass 45S5 for the prepared samples. This behavior was attributed to an increase in phase separation in glasses. Nevertheless, transformations shifted towards higher temperatures with addition of feldspar, due to a decrease in pre-exponential factor. Cell parameters evolved progressively with increasing temperature without any abrupt changes. Al2O3 and K2O remained as a part of a residual glassy phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Filgueiras, M.R.T., La Torre, G., and Hench, L.L., Solution effects on the surface reactions of three bioactive glass compositions, J. Biomed. Mater. Res., 1993, vol. 27, no. 12, pp. 1485–1493.

    Article  Google Scholar 

  2. Peitl, O., Zanotto, E.D., and Hench, L.L., Highly bioactive P2O5–Na2O–CaO–SiO2 glass–ceramics, J. NonCryst. Solids, 2001, vol. 292, nos. 1–3, pp. 115–126.

    Article  Google Scholar 

  3. Heikkilä, J.T., Aho, A.J., Yli-Urpo, A., Andersson, Ö.H., Aho, H.J., and Happonen, R.P., Bioactive glass versus hydroxylapatite in reconstruction of osteochondral defects in the rabbit, Acta Orthop., 1993, vol. 64, no. 6, pp. 678–682.

    Article  Google Scholar 

  4. Hench, L.L., Bioceramics: From concept to clinic, J. Am. Ceram. Soc., 1991, vol. 74, no. 7, pp. 1487–1510.

    Article  Google Scholar 

  5. Hench, L.L. and Paschall, H., Direct chemical bond of bioactive glass–ceramic materials to bone and muscle, J. Biomed. Mater. Res., 1973, vol. 7, no. 3, pp. 25–42.

    Article  Google Scholar 

  6. Andersson, Ö., Liu, G., Karlsson, K., Niemi, L., Miettinen, J., and Juhanoja, J., In vivo behaviour of glasses in the SiO2–Na2O–CaO–P2O5–Al2O3–B2O3 system, J. Mater. Sci.: Mater. Med., 1990, vol. 1, no. 4, pp. 219–227.

    Google Scholar 

  7. Chen, Q., Mohn, D., and Stark, W.J., Optimization of Bioglass® scaffold fabrication process, J. Am. Ceram. Soc., 2011, vol. 94, no. 12, pp. 4184–4190.

    Article  Google Scholar 

  8. Jones, J.R., Ehrenfried, L.M., and Hench, L.L., Optimising bioactive glass scaffolds for bone tissue engineering, Biomaterials, 2006, vol. 27, no. 7, pp. 964–973.

    Article  Google Scholar 

  9. Chen, Q.Z., Thompson, I.D., and Boccaccini, A.R., 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering, Biomaterials, 2006, vol. 27, no. 11, pp. 2414–2425.

    Article  Google Scholar 

  10. Blaine, R.L. and Kissinger, H.E., Homer Kissinger and the Kissinger equation, Thermochim. Acta, 2012, vol. 540, pp. 1–6.

    Article  Google Scholar 

  11. Ozawa, T., Kinetic analysis of derivative curves in thermal analysis, J. Therm. Anal., 1970, vol. 2, no. 3, pp. 301–324.

    Article  Google Scholar 

  12. Arstila, H., Vedel, E., Hupa, L., and Hupa, M., Factors affecting crystallization of bioactive glasses, J. Eur. Ceram. Soc., 2007, vol. 27, nos. 2–3, pp. 1543–1546.

    Article  Google Scholar 

  13. Massera, J., Fagerlund, S., Hupa, L., and Hupa, M., Crystallization mechanism of the bioactive glasses, 45S5 and S53P4, J. Am. Ceram. Soc., 2012, vol. 95, no. 2, pp. 607–613.

    Article  Google Scholar 

  14. Clupper, D.C. and Hench, L.L., Crystallization kinetics of tape cast bioactive glass 45S5, J. Non-Cryst. Solids, 2003, vol. 318, nos. 1–2, pp. 43–48.

    Article  Google Scholar 

  15. Lefebvre, L., Chevalier, J., Gremillard, L., Zenati, R., Thollet, G., Bernache-Assolant, D., and Govin, A., Structural transformations of bioactive glass 45S5 with thermal treatments, Acta Mater., 2007, vol. 55, no. 10, pp. 3305–3313.

    Article  Google Scholar 

  16. Bretcanu, O., Chatzistavrou, X., Paraskevopoulos, K., Conradt, R., Thompson, I., and Boccaccini, A.R., Sintering and crystallisation of 45S5 Bioglass® powder, J. Eur. Ceram. Soc., 2009, vol. 29, no. 16, pp. 3299–3306.

    Article  Google Scholar 

  17. Doremus, R.H. and Sigel, G.H., Glass Science, 2nd ed., New York: Wiley, 1994.

    Google Scholar 

  18. Bellucci, D., Cannillo, V., and Sola, A., An overview of the effects of thermal processing on bioactive glasses, Sci. Sintering, 2010, vol. 42, no. 3, pp. 307–320.

    Article  Google Scholar 

  19. Hill, R.G., Stamboulis, A., Law, R.V., Clifford, A., Towler, M.R., and Crowley, C., The influence of strontium substitution in fluorapatite glasses and glass–ceramics, J. Non-Cryst. Solids, 2004, vol. 336, no. 3, pp. 223–229.

    Article  Google Scholar 

  20. Chatzistavrou, X., Chrissafis, K., Polychroniadis, E., Kontonasaki, E., Koidis, P., and Paraskevopoulos, K.M., Inducing bioactivity in dental porcelain through Bioglass®: Changes in thermal behaviour, J. Therm. Anal. Calorim., 2006, vol. 86, no. 1, pp. 255–259.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Matias Stábile.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stábile, F.M., Volzone, C. Effect of feldspar addition into bioglass 45S5 composition: Crystallization kinetics and thermal transformation. Glass Phys Chem 42, 20–26 (2016). https://doi.org/10.1134/S108765961601017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765961601017X

Keywords

Navigation