Skip to main content
Log in

“Invisible” Gold in Synthetic and Natural Arsenopyrite Crystals, Vorontsovka Deposit, Northern Urals

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

“Invisible” gold in hydrothermal ores is frequently scattered in the most abundant minerals of the Fe–As–S system. It is assumed that “invisible” gold does not incorporate into the mineral structure (nanoscale inclusions of the metal or its compounds) or is chemically bound (isomorphous substitution). The aim of this study is to determine the concentration range of “invisible” gold, species of its occurrence in arsenopyrite, and conditions facilitating the formation of gold-bearing arsenopyrite using synthetic crystals and natural samples from the Vorontsovka Carlin-type deposit in the Northern Urals. Arsenopyrite crystals have been synthesized using the ampoule method in a eutectic melt of alkali metal chlorides and Al at a stationary thermal gradient and 400–500°C at the cold ampoule end. The chemical composition of arsenopyrite has been measured by electron probe microanalysis. The chemical composition of synthesized arsenopyrite is, at %: 32.6–34.4 Fe, 30–36.5 As, and 29.4–36.0 As. The gold concentration ranges from below the detection limit (<45 ppm) to 3 wt %. The obtained chemical data for synthetic crystals are compared with theoretical trends calculated for various gold species. It has been established that the slope of the trends of the average arsenopyrite compositions is very close to that of the theoretical line of isomorphous substitution Au ↔ Fe. It allows the assumption that the isomorphous solid solution in which Au occupies the Fe site formed during experiment. In general, all our data on synthetic and natural arsenopyrite show a strong negative correlation between Au and Fe, which supports the formation of the solid solution with Au at the cation site. In addition, a weak positive correlation between Au and As is observed: the higher As concentration is characteristic of As-rich (As/S > 1 at %) arsenopyrite and is close to stoichiometry, whereas in the S-rich variety, the Au content is as low as 0.25 wt %. This dependence is not only within individual grains, but also at the deposit in general: later As-rich arsenopyrite formed at lower temperature and sulfur fugacity (T = 250–370°C, log f  S2 = –12 to –17) is enriched in Au compared to early arsenopyrite (T = 270–400°C, log f  S2 = –7 to –9). Comparison of our data with the literature shows that an increasing Au content with increasing As concentration and decreasing Fe content in arsenopyrite is a common feature of Carlin-type deposits. We believe that in contrast to the negative correlation between Au and Fe, the correlation between Au and As is not obvious and may be caused by external factors, different composition of hydrothermal fluids, and sulfur fugacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. Benzaazoua, M., Marion, P., Robaut, F., and Pinto, A., Gold-bearing arsenopyrite and pyrite in refractory ores: analytical refinements and new understanding of gold mineralogy, Mineral. Mag., 2007, vol. 71, pp. 123–142.

    Article  Google Scholar 

  2. Bobrov V.N. Vorontsovskii klad. Poiski i otkrytiya (Vorontsov Treasure. Search and Discovery), Karpinsk: Pechatnyi dom “Perspektiva”, 2013.

  3. Boiron, M.-C., Cathelineau, M., and Trescases, J.-J., Conditions of gold-bearing arsenopyrite crystallization in the Villeranges Basin, Marche-Combrailles shear zone, France: a mineralogical and fluid inclusion study, Econ. Geol., 1989, vol. 84, pp. 1340–1362.

    Article  Google Scholar 

  4. Bortnikov, N.S., On reliability of arsenopyrite and arsenopyrite–sphalerite geothermometers, Geol. Rudn. Mestorozhd., 1993, no. 2, pp. 177–191.

  5. Bortnikov, N.S., Genkin, A.D., and Chryssoulis, S., Deposition environment of gold-bearing arsenopyrite in mesothermal deposits, Current Research in Geology Applied to Ore Deposits, Granada: Granada Univ., 1993.

    Google Scholar 

  6. Cabri, L.J., Chryssoulis, S.L., de Villiers, J.P.R., Laflamme, J.H.G., and Buseck, P.R., The nature of “invisible” gold in arsenopyrite, Can. Mineral., 1989, vol. 27, pp. 353–362.

    Google Scholar 

  7. Cabri, L.J., Newville, M., Gordon, R.A., Daryl Crozier, E., Sutton, S.R., Mcmahon, G., and Jiang, D.T., Chemical speciation of gold in arsenopyrite, Can. Mineral., 2000, vol. 38, pp. 1265–1281.

    Article  Google Scholar 

  8. Cathelineau, M., Boiron, M.-C., Holliger, P., Marion, P., and Denis, M., Gold in arsenopyrites: crystal chemistry, location and state, physical and chemical conditions of deposition. in: the geology of gold deposits: the perspective in 1988, Econ. Geol. Monogr. Ser., Keays, R.R., Ramsay, W.R.H., and Groves, D.I, Eds., 1989, no. 6, pp. 328–341.

  9. Cepedal, A., Fuertes-Fuente, M., Martin-Lizard, A., Gonzalez-Nistal, S., and Barrero, M., Gold-bearing As-rich pyrite and arsenopyrite from the El Valle gold deposit, Asturias, northwestern Spain, Can. Mineral., 2008, vol. 46, pp. 233–247.

    Article  Google Scholar 

  10. Chareev D.A., Volkova O.S., Geringer N.V., Koshelev A.V., Nekrasov A.N., Osadchii V.O., Osadchii E.G., and Filimonova, O.N., Synthesis of chalcogenide and pnictide crystals in salt melts using a steady-state temperature gradient, Crystal. Rept., 2016, vol.61. no. 4, pp. 652–662.

    Google Scholar 

  11. Cheremisin, A.A. and Zlotnik-Khotkevich, A.G., Vorontsovskoe gold-bearing deposit, Rudy Met., 1997, no. 1, pp. 59–70.

  12. Cook, N.J. and Chryssoulis, S.L., Concentrations of “invisible” “gold” in the common sulfides, Can. Mineral., 1990, vol. 28, pp. 1–16.

    Google Scholar 

  13. Cook, N.J., Ciobanu, C.L., and Mao, J., Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang, and Hougou gold deposits, North China Craton (Hebei Province, China), Chem. Geol., 2009, vol. 264, pp. 101–121.

    Article  Google Scholar 

  14. Filimonova, O.N., Trigub, A.L., Tonkacheev, D.E., Nickolsky, M.S., Kvashnina, K.O., Chareev, D.A., Chaplygin, I.V., Kovalchuk, E.V., Lafuerza, S., and Tagirov, B.R., Substitution mechanisms in In, Au, and Cu-bearing sphalerites studied by X-ray absorption spectroscopy of synthetic and natural minerals, Mineral. Mag., 2019, vol. 83, no. 3, 682–691.

    Article  Google Scholar 

  15. Fleet, M.E. and Mumin, A.H., Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin trend gold deposits and laboratory synthesis, Am. Mineral., 1997, vol. 82, pp. 182–193.

    Article  Google Scholar 

  16. Fougerouse, D., Reddy, S.M., Saxey, D.W., Rickard, W.D.A., Riessen, A., and Micklethwaite, S., Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration: evidence from atom probe microscopy, Am. Mineral., 2016, vol. 101, pp. 1916 – 1919.

    Article  Google Scholar 

  17. Genkin, A.D., Bortnikov, N.S., Cabri, L.J., Wagner, F.E., Stanley, C.J., Safonov, O.G., McMahon, G., Friedl, J., Kerzin, A.L., and Gamyanin, G.N., A multidisciplinary study of invisible gold in arsenopyrite from four mesothermal gold deposits in Siberia, Russian Federation, Econ. Geol., 1998, vol. 93, pp. 463–487.

    Article  Google Scholar 

  18. Goldfarb, R.J., Baker, T., Dube, B., Groves, D.I., Hart, C.J., and Gosselin, P., Distribution, character, and genesis of gold deposits in metamorphic terranes, Econ. Geol., 2005, vol. 100, pp. 407–450.

    Google Scholar 

  19. Johan, Z., Marcoux, E., and Bonnemaison, M., Arsenopyrite aurifere: mode de substitution de au dans la structure de feass, Comptes Rendus de l’Academie des Sciences, 1989, vol. 308. Ser. II, pp. 185–191.

  20. Kojonen, K. and Johanson, B., Determination of refractory gold distribution by microanalysis, diagnostic leaching and image analysis, Mineral. Petrol., 1999, vol. 67, pp. 1–19.

    Article  Google Scholar 

  21. Kovalev, K.R., Kalinin, Yu.A., Naumov, E.A., Kolesnikova, M.K., and Korolyuk, V.N., Gold-bearing arsenopyrite in Eastern Kazakhstan gold–sulfide deposits, Russ. Geol. Geophys., 2011, vol. 52, no. 2, pp. 178–192.

    Article  Google Scholar 

  22. Kretschmer, U. and Scott, S.D., Phase relations involving arsenopyrite in the system Fe–As–S and their application, Can. Mineral., 1976, vol. 14, pp. 364–386.

    Google Scholar 

  23. Large, R.R., Maslennikov, V.V., Robert, F., Danyushevsky, L.V., and Chang, Z., Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia, Econ. Geol., 2007, vol. 102, pp. 1233–1267.

    Article  Google Scholar 

  24. Marcoux, E., Bonnemaison, M., Braux, C., and Johan, Z., Distribution de Au, Sb, As et Fe dans l’arsenopyrite aurifere du Chatelet et de Dilleranges (Greuse, Massif Central Francais), Comptes Rendus de l’Academie des Sciences, 1989, vol 308, Ser. II, pp. 293–300.

  25. Marion, P., Regnard, J.-R., and Wagner, F.E., Etude de l’etat chimique de l’or dans des sulfures auriferes par spectroscopie mossbauer de l97au : premiers resultats, Comptes Rendus de l’Academie des Sciences, 1986, vol. 302, Ser. II, pp. 571–574.

  26. McClenaghan, S.H., Lentz, D.R., Martin, J., and Diegor, W.G., Gold in the Brunswick no. 12 volcanogenic massive sulfide deposit, Bathurst Mining Camp, Canada: evidence from bulk ore analysis and laser ablation ICP-MS data on sulfide phases, Miner. Deposita, 2009, vol. 44, pp. 523–557.

    Article  Google Scholar 

  27. Minina, O.V., Auerbakhovskaya complex ore-magmatic system in the Middle Urals, Otechestvennaya Geol., 1994, no. 7, pp. 17–23.

  28. Murzin, V.V. and Sazonov, V.N. Gold-bearing mineral assemblages in the copper and iron skarn deposits of the Tur’insk–Auerbakhovsk ore field and their formation condition (the Urals, Russia), Geol. Ore Deposits, 1999, vol.41, no. 4, pp. 308–321.

    Google Scholar 

  29. Murzin, V.V., Naumov, E.A., Azovskova, O.B., Varlamov, D.A., Rovnushkin, M.Yu., and Pirajno, F., The Vorontsovskoe Au–Hg–As ore deposit (Northern Urals, Russia): geological setting, ore mineralogy, geochemistry, geochronology and genetic model, Ore Geol. Rev., 2017, vol. 85, pp. 271–298.

    Article  Google Scholar 

  30. Palenik, C.S., Utsunomiya, S., Reich, M., Kesler, S.E., Wang, L., and Ewing, R.C., “Invisible” gold revealed: direct imaging of gold nanoparticles in a Carlin-type deposit, Am. Mineral., 2004, vol. 89, pp. 1359–1366.

    Article  Google Scholar 

  31. Podlesskii, K.V., Skarny i okolorudnye metasomatity zhelezorudnykh mestorozhdenii Urala i Kavkaza (Skarns and Wall-Rock Metasomatites of the Iron Deposits of the Urals and Caucasus), Moscow: Nauka, 1979.

  32. Sazonov, V.N., Murzin, V.V., and Grigor’ev, N.A., Vorontsovsk gold deposit: an example of Carlin-type mineralization in the Urals, Russia, Geol. Ore Deposits, 1998, vol.40, no. 2, pp. 139–151.

    Google Scholar 

  33. Sazonov, V.N., Murzin, V.V., Grigor’ev N.A., and Gladkovskii, B.A., Endogennoe orudenenie devonskogo andezitoidnogo vulkano-plutonicheskogo kompleksa (Ural) (Endogenous Mineralization of the Devonian Andesitic Volcanoplutonic Complex, Urals), Sverdlovsk: UrO AN SSSR, 1991. 184 s.

  34. Self, P.G., Norrish, K., Milnes, A.R., Graham, J., and Robinson, B.W., Holes in the background in xrs, X-ray Spectrometry, 1990, vol. 19, pp. 59–61.

    Article  Google Scholar 

  35. Sung, Y.H., Brugger, J., Ciobanu, C.L., Pring, A., Skinner, W., and Nugus, M., Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, western Australia, Miner. Deposita, 2009, vol. 44, pp. 765–791.

    Article  Google Scholar 

  36. Tagirov, B.R., Dikov, Yu.P., Bulev, M.I., Koval’chuk, E.V., Chareev, D.A., Kokh, M.A., Borisovskii, S.E., Abramova, V.D., Baranova, N.N., Garas’ko, M.I., Kovalenker, V.A., and Bortnikov, N.S., “Invisible” gold in covellite (CuS): synthesis and studies by EPMA, LA–ICP–MS, and XPS techniques, Dokl. Earth Sci., 2014, vol.459, no. 1, pp. 1381–1386.

    Article  Google Scholar 

  37. Tagirov, B.R., Trigub, A.L., Kvashnina, K.O., Shiryaev, A.A., Chareev, D.A., Nickolsky, M.S., Abramova, V.D., and Kovalchuk, E.V., Covellite cus as a matrix for “invisible” gold: X-ray spectroscopic study of the chemical state of Cu and Au in synthetic minerals, Geochim. Cosmochim. Acta, 2016, vol. 191, pp. 58–69.

    Article  Google Scholar 

  38. Tarnocai, C.A., Hattori, K., and Cabri, L.J., “Invisible” gold in sulfides from the Campbell mine, Red Lake greenstone belt, Ontario: Evidence for mineralization during the peak of metamorphism. Can. Mineral, 1997, vol. 35, pp. 805–815.

    Google Scholar 

  39. Toulmin, P. and Barton, P.B., A thermodynamic study of pyrite and pyrrhotite, Geochim. Cosmochim. Acta, 1964, vol. 28, pp. 641–671.

    Article  Google Scholar 

  40. Trigub, A.L., Tagirov, B.R., Kvashnina, K.O., Chareev, D.A., Nickolsky, M.S., Shiryaev, A.A., Baranova, N.N., Kovalchuk, E.V., and Mokhov, A.V., X-ray spectroscopy study of the chemical state of “invisible” au in synthetic minerals in the Fe–As–S system, Am. Mineral., 2017, vol. 102, pp. 1057–1065.

    Google Scholar 

  41. Vikentyev, I.V., Invisible and microscopic gold in pyrite: methods and new data for massive sulfide ores of the Urals, Geol. Ore Deposits, 2015, vol. 57, no. 4, pp. 237–265.

    Article  Google Scholar 

  42. Vikentiev, I.V., Abramova V.D., Ivanova Yu.N., Tyukova, E.E., Koval’chuk, E.V., and Bortnikov, N.S., Trace elements in pyrite from the Petropavlovsk gold–porphyry deposit (Polar Urals): results of LA-ICP-MS analysis, Dokl. Earth Sci., 2016a, vol.470, no. 3, pp. 9776–980.

    Article  Google Scholar 

  43. Vikent’ev, I.V., Tyukova, E.E., Murzin, V.V., Vikent’eva, O.V., and Pavlov, L.G., Vorontsovskoe zolotorudnoe mestorozhdenie. Geologiya, formy zolota, genesis, (Vorontsovskoe Gold Deposit. Geology, Gold Speciation, Genesis), Yekaterinburg: Fort Dialog-Iset’, 2016b.

  44. Vikentyev, I.V., Tyukova, E.E., Vikent’eva, O.V., Chugaev, A.V., Dubinina, E.O., Prokofiev, V.Yu., and Murzin, V.V., Vorontsovka Carlin-style gold deposit in the north Urals: mineralogy, fluid inclusion and isotope data for genetic model, Chem. Geol., 2019, vol. 508, pp. 144–166.

    Article  Google Scholar 

  45. Wagner, T., Klemd, R., Wenzel, T., and Mattson, B., Gold upgrading in metamorphosed massive sulfide ore deposits: direct evidence from laser-ablation-inductively-coupled plasma mass spectrometry of invisible gold, Geology, 2007, vol. 35, pp. 775–778.

    Article  Google Scholar 

  46. Wu, X. and Delbove, F., Hydrothermal synthesis of gold-bearing arsenopyrite, Econ. Geol., 1989, vol. 84, pp. 2029–2032.

    Article  Google Scholar 

  47. Wu, X., Delbove, F., and Touray, J.C., Conditions of formation of gold-bearing arsenopyrite: a comparison of synthetic crystals with samples from Le Chatelet gold deposit, creuse, france, Miner. Deposita, 1990, vol. 25, pp. 8–12.

    Article  Google Scholar 

  48. Yazeva, R.G., Puchkov, V.N., and Bochkarev, V.V., Relicts of active continental margin in the Urals structure, Geotektonika, 1989, no. 3, pp. 76–89.

Download references

ACKNOWLEDGEMENTS

We thank E.E. Amplieva for invaluable comments and recommendations on the manuscript and V.Yu. Prokofiev for promoting discussion of the manuscript at the laboratory.

Funding

This study was supported by the Russian Science Foundation (project no. 17-17-01220, synthetic crystals) and base theme IGEM RAS AAAA-A18-11802150167-1 (natural minerals). Chemical analyses were performed at the Common Use Center IGEM-Analitika.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kovalchuk.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by I. Baksheev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalchuk, E.V., Tagirov, B.R., Vikentyev, I.V. et al. “Invisible” Gold in Synthetic and Natural Arsenopyrite Crystals, Vorontsovka Deposit, Northern Urals. Geol. Ore Deposits 61, 447–468 (2019). https://doi.org/10.1134/S1075701519050039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701519050039

Keywords:

Navigation