Skip to main content
Log in

Invisible and microscopic gold in pyrite: Methods and new data for massive sulfide ores of the Urals

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Au speciation in sulfides (including “invisible” Au), which mostly controls the loss of Au during ore dressing, is discussed. Modern methods of analysis of Au speciation, with discussion of limitations by locality and sensitivity, are reviewed. The results of sulfide investigation by the methods of scanning and transmission electron microscopy, mass spectrometric analysis with laser ablation (LA–ICP–MS), the thermochemical method (study of ionic Au speciation), and automated “quantitative mineralogy,” are demonstrated for weakly metamorphosed VHMS deposits of the Urals (Galkinsk and Uchaly). Significant content of Au is scattered in sulfides, such as pyrite, chalcopyrite, and sphalerite, with quantitative predomination of pyrite. The portion of such “invisible” gold ranges from <10% (Galkinsk deposit) to 85% (Uchaly deposit). Major part of “invisible” gold occurs as micron- to nanoscale particles of Au minerals. The portion of gold structurally bound in pyrite lattice (from the bulk concentration of Au in pyrite) is estimated to be from few % (the Galkinsk deposit) to 20–25% (the Uchaly deposit). The presence of As and Sb in pyrite and sphalerite, as well as other trace elements (Te, Co, Mn, Cu, Hg, and Ag in both as well as Fe in sphalerite) stimulates the incorporation of Au in sulfide, but mostly in defect-associated, not isomorphic form. Micron particles of Ag sulfosalts (pyrargyrite, freibergite, stephanite, polybasite, pyrostilpnite, argentotetrahedrite, pearceite, proustite), Au–Ag alloys (from gold of high fineness to küstelite), Ag and Au–Ag tellurides (hessite, empressite, calaverite), and occasional Au–Ag sulfides (petrovskaite, uytenbogaardtite) were registered in the areas of Au enrichment of both deposits; selenotelluride (kurilite) particles were found on the Galkinsk deposit. Nanoscale (1–50 nm) native gold (spherical and disk-shaped particles, flakes) with a monocrystal diffraction pattern of some particles and a ring diffraction pattern of other particles was registered in the ores of these deposits by the methods of transmission electron microscopy. The low degree (or absence) of metamorphic recrystallization results in (1) predomination of thin intergrowths of sulfides, which is the main reason for the bad concentration of ores (especially for the Galkinsk deposit) and (2) the high portion of “invisible” gold in the massive sulfide ores, which explains the low yield of Au in copper and zinc concentrates, since it is lost in tailings with predominating pyrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afifi, A.M., Kelly, W.C., and Essene, E.J., Phase relations among tellurides, sulfides, and oxides: I. Thermodynamical data and calculated equilibria. II. Applications to telluridebearing ore deposits, Econ. Geol., 1988, vol. 83, pp. 377–404.

    Article  Google Scholar 

  • Almeida, C.M., Olivo, G.R., Chouinard, A., et al., Mineral paragenesis, alteration, and geochemistry of the two types of gold ore and the host rocks from the Carlin-type deposits in the southern part of the Goldstrike property, Northern Nevada: implications for sources of ore-forming elements, ore genesis, and mineral exploration, Econ. Geol., 2010, vol. 105, pp. 971–1004.

    Article  Google Scholar 

  • Arehart, G.B., Chrysoulis, S.L., and Kesler, S.E., Gold and arsenic iron sulfides from sediment-hosted disseminated gold deposits, Econ. Geol., 1993, vol. 88, pp. 171–185.

    Article  Google Scholar 

  • Ashley, P.M., Creagh, C.J., and Ryan, C.G., Invisible gold in ore and mineral concentrates from the Hillgrove goldantimony deposits, NSW Australia, Miner. Deposita, 2000, vol. 35, no. 4, pp. 285–301.

    Article  Google Scholar 

  • Barker, S.L.L., Hickey, K.A., Cline, J.S., et al., Uncloaking invisible gold: use of nano-sims to evaluate gold, trace elements, and sulphur isotopes in pyrite from Carlin-type gold deposits, Econ. Geol., 2009, vol. 104, pp. 897–904.

    Article  Google Scholar 

  • Bennet, A.J. and Benning, L.G., Gold and arsenic interactions with pyrite in hydrothermal solutions, Geochim. Cosmochim. Acta, 2004, vol. 68, p. A293.

    Article  Google Scholar 

  • Bogdanov, Yu.A., Bortnikov, N.S., Vikent’ev, I.V., et al., Mineralogical–geochemical peculiarities of hydrothermal sulfide ores and fluids in the Rainbow field associated with serpentinites, Mid-Atlantic Ridge (36°14' N), Geol. Ore Deposits, 2002, vol. 44, no. 6, pp. 444–473.

    Google Scholar 

  • Bortnikov, N.S., Distler, V.V., Vikent’ev, I.V., et al., Speciation of noble metals in ores of the complex deposits: Methods of study, quantitavive characteristics, technological importance, Problemy mineragenii Rossii (Problems of Russian Minerageny), Moscow: GTs RAN, 2012, pp. 365–384. http://onznews.wdcb.ru/ebooks/minerageny/chap_2.1.1. pdf.

    Google Scholar 

  • Bortnikov, N.S., Cabri, L.J., Vikent’ev, I.V., et al., Invisible gold in sulfides from seafloor massive sulfide edifices, Geol. Ore Deposits, 2003, vol. 45, no. 3, pp. 201–212.

    Google Scholar 

  • Cabri, L.J., The distribution of trace precious metals in minerals and mineral products, Mineral. Mag., 1992, vol. 56, pp. 289–308.

    Article  Google Scholar 

  • Cabri, L.J., McMahon, G., Bortnikov, N.S., et al., Sims gold analyses of sea floor sulfide minerals, Proc. 12th Int. Conf. Secondary Ion Mass Spectrometry, Brussels: Elsevier, 2000a, pp. 1019–1022.

    Google Scholar 

  • Cabri, L.J., Newville, M., and Gordon, R.A., Chemical speciation of gold in arsenopyrite, Can. Mineral., 2000b, vol. 38, pp. 1265–1281.

    Article  Google Scholar 

  • Cathelineau, M., Boiron, M.C., Holiger, P., et al., Gold arsenopyrite: crystal-chemistry, location and state, physical and chemical conditions of deposition, Econ. Geol., 1989, pp. 328–341.

    Google Scholar 

  • Cepedal, A., Fuertes-Fuente, M., Martin-Izard, A., et al., Gold-bearing As-rich pyrite and arsenopyrite from the El Valle gold deposit, Asturias, Northwestern Spain, Can. Mineral., 2008, vol. 46, no. (1), pp. 233–247.

    Article  Google Scholar 

  • Chen, J.-H., Li, Y.-Q., Zhong, S.-P., and Guo, J., DFT simulation of the occurrences and correlation of gold and arsenic in pyrite, Am. Mineral., 2013, vol. 98, pp. 1765–1771.

    Article  Google Scholar 

  • Chouinard, A., Paquette, J., and Williams-Jones, A.E., Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal highsulfidation deposit, chile-argentina, Can. Mineral., 2005, vol. 43, pp. 951–963.

    Article  Google Scholar 

  • Ciobanu, C.L., Cook, N.J., Utsunomiya, S., et al., Goldtelluride nanoparticles in arsenic-free pyrite, Am. Mineral., 2012, vol. 97, pp. 1515–1518.

    Article  Google Scholar 

  • Cook, N.J. and Chryssoulis, S.L., Concentrations of “invisible gold” in the common sulfides, Can. Mineral., 1990, vol. 28, pp. 1–16.

    Google Scholar 

  • Cook, N.J., Ciobanu, C.L., Pring, A., et al., Trace and minor elements in sphalerite: A LA-ICPMS study, Geochim. Cosmochim. Acta, 2009, vol. 73, pp. 4761–4791.

    Article  Google Scholar 

  • Cook, N.J., Ciobanu, C.L., Danyushevsky, L.V., and Gilbert, S., Minor and trace elements in bornite and associated Cu-(Fe)-sulfides: a LA-ICP-MS study, Geochim. Cosmochim. Acta, 2011, vol. 75, pp. 6473–6496.

    Article  Google Scholar 

  • Danyushevsky, L., Robinson, P., Gilbert, S., et al., Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: standard development and consideration of matrix effects, Geochem.: Explor., Environ., Anal., 2011, vol. 11, pp. 51–60.

    Google Scholar 

  • Deditius, A.P., Reich, M., Kesler, S.E., et al., The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits, Geochim. Cosmochim. Acta, 2014, vol. 140, pp. 644–670.

    Article  Google Scholar 

  • Emsbo, P., Hofstra, A.H., Lauha, E.A., et al., Origin of highgrade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, Northern Carlin Trend, Nevada, Econ. Geol., 2003, vol. 98, pp. 1069–1105.

    Google Scholar 

  • Fisher, L.A., Fougerouse, D., Cleverley, J.S., et al., Quantified, multi-scale X-ray fluorescence element mapping using the Maia detector array: application to mineral deposit studies, Miner. Deposita, 2014, DOI 10.1007/s00126-0140562-z.

    Google Scholar 

  • Fleet, M.E. and Mumin, A.H., Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis, Am. Mineral., 1997, vol. 82, nos. 1–2, pp. 182–193.

    Google Scholar 

  • Garuti, G. and Zaccarini, F., Minerals of Au, Ag and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite (Italy), Can. Mineral., 2005, vol. 43, pp. 935–950.

    Article  Google Scholar 

  • Gaspar, O.C., Mineralogy and sulfide mineral chemistry of the Neves-Corvo ores, Portugal: Insight into their genesis, Can. Mineral., 2002, vol. 40, pp. 611–636.

    Article  Google Scholar 

  • Genkin, A.D., Bortnikov, N.S., Cabri, L., et al., A multidisciplinary study of invisible gold in arsenopyrite from four mesothermal gold deposits in Siberia, Russian Federation, Econ. Geol., 1998, vol. 93, pp. 463–487.

    Article  Google Scholar 

  • Gidrotermal’nye sul’fidnye rudy i metallonosnye osadki okeana (Hydrothermal Sulfide Ores and Metal-Bearing Sediments of the Ocean), St. Petersburg: Nedra, 1992.

  • Hannington, M.D., de Ronde, C.E.J., Petersen, S., et al., Seafloor tectonics and submarine hydrothermal systems, Economic Geology 100th Ann., Littleton: Soc. Econ. Geol., 2005, pp. 111–141.

    Google Scholar 

  • Healy, R.E. and Petruk, W., Petrology of Au-Ag-Hg-alloy and 'invisible' gold in the Trout Lake massive sulfide deposit, Flin Flon, Manitoba, Can. Mineral., 1990, vol. 28, pp. 189–206.

    Google Scholar 

  • Hough, R.M., Noble, R.R.P., and Reich, M., Natural gold nanoparticles, Ore Geol. Rev., 2011, vol. 42, pp. 55–61.

    Article  Google Scholar 

  • Huston, D.L., Sie, Sh., Suter, G.F., et al., Trace elements in sulfide minerals from Eastern Australian volcanic-hosted massive sulfide deposits. I. Proton microprobe analyses of pyrite, chalcopyrite, and sphaleryte. II. Selenium levels in pyrite: comparison with δ34S values and implications for the source of sulfur in volcanogenic hydrothermal systems, Econ. Geol., 1995, vol. 90, pp. 1167–1196.

    Article  Google Scholar 

  • Huston, D.L., Gold in volcanic-hosted massive sulfide deposits: Distribution, genesis and exploration, Rev. Econ. Geol., 2000, vol. 13, pp. 401–426.

    Google Scholar 

  • Hutchinson, R.W., Precious metals in massive base metal sulfide deposits, Geologische Rundschau, 1990, vol. 79, no. (2), pp. 241–263.

    Article  Google Scholar 

  • Knauf, O.V., Automatic mineralogy—Search for rare phases, classification of ores, and quality control, Proc. Annual Meeting Rus. Min. Soc., St. Petersburg: LEMA, 2012, pp. 365–367.

    Google Scholar 

  • Kozerenko, S.V., Wagner, F.E., Friedl, J., and Fadeev, V.V., Gold in pyrite formation processes: 3. Mössbauer study of synthetic gold-bearing iron sulfides, Geochem. Int., 2001, vol. 39, no. Suppl. 2, pp. S167–S172.

    Google Scholar 

  • Krinov, D.I., Bortnikov, N.S., and Chanturiya, E.L., New data on the distribution of native and chemically bold gold in sulfide ores on the example of the Gai deposit (South Urals), New ideas in Earth Sciences. Proc. Int. Conf., Moscow, Moscow State Geol. Prospect. Acad., 2007, pp. 181–183.

    Google Scholar 

  • Laptev, Yu.V., Shironosova, G.P., and Novikova, S.P., Prediction of gold forms in sulfides: evidence from experiments and calculations, Dokl. Earth Sci., 2010, vol. 432, no. 1, pp. 682–686.

    Article  Google Scholar 

  • Large, R.R., Bull, S.W., and Maslennikov, V.V., A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits, Econ. Geol., 2011, vol. 106, pp. 331–358.

    Article  Google Scholar 

  • Larocque, A.C.L., Hodgson, C.J., Cabri, L.J., et al., Ionmicroprobe analysis of pyrite, chalcopyrite and pyrrhotite from the Mobrun VMS deposit in northwestern Quebec: evidence for metamorphic remobilization of gold, Can. Mineral., 1995, vol. 33, pp. 373–388.

    Google Scholar 

  • Leistel, J.M., Marcoux, E., Deschamps, Y., and Joubert, M., Antithetic behavior of gold in the volcanogenic massive sulphide deposits of the Iberian Pyrite Belt, Mineral. Deposita, 1998, vol. 33, nos. 1–2, pp. 2–30.

    Google Scholar 

  • Li, J., Fing, D., Qi, J., and Zhang, G., The existence of the negative valence state of gold in sulfide minerals and its formation mechanism, Acta Geol. Sin., 1995, vol. 69, pp. 67–77.

    Google Scholar 

  • Lodeishchikov, V.V., Tekhnologiya izvlecheniya zolota i serebra iz upornykh rud (Technology of extraction of gold and silver from resistant ores), Irkutsk: Irgiredmet, 1999.

    Google Scholar 

  • Maddox, L.M., Bancroft, G.M., Scaini, M.J., and Lorimer, J.W., Invisible gold: comparison of Au deposition on pyrite and arsenopyrite, Am. Mineral., 1998, vol. 83, nos. 11–12, pp. 1240–1245.

    Google Scholar 

  • Marignac, C., Diagana, B., Cathelineau, M., et al., Remobilisation of base metals and gold by Variscan metamorphic fluids in the south Iberian pyrite belt: evidence from the Tharsis VMS deposit, Chem. Geol., 2003, vol. 194, nos. 1–3, pp. 143–165.

    Article  Google Scholar 

  • Maslennikov, V.V., Maslennikova, S.P., Large, R.R., and Danyushevsky, L.V., Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanichosted massive sulphide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS), Econ. Geol., 2009, vol. 104, pp. 1111–1141.

    Article  Google Scholar 

  • Maslennikov, V.V., Lein, A.Yu., Maslennikova, S.P., and Bogdanov, Yu.A., Phanerozoic “black smokers” as indicators of the composition of ore-hosting complexes, Litosfera, 2010, no. 3, pp. 153–162.

    Google Scholar 

  • Maslennikov, V.V., Maslennikova, S.P., Large, R.R., et al., Tellurium-bearing minerals in zoned sulfide chimneys from Cu-Zn-massive sulfide deposits of the Urals, Russia, Mineral. Petrol., 2013, vol. 107, no. 1, pp. 67–99.

    Article  Google Scholar 

  • McClenaghan, Sh., Lentz, D.R., and Cabri, L.J., Abundance and speciation of gold in massive sulfides of the Bathurst Mining Camp, New Brunswick, Canada, Can. Mineral., 2004, vol. 42, pp. 851–871.

    Article  Google Scholar 

  • McClenaghan, Sh., Lentz, D.R., Martin, J., and Diegor, J., Gold in the Brunswick no. 12 volcanogenic massive sulfide deposit, Bathurst Mining Camp, Canada: Evidence from bulk-ore analysis and laser-ablation ICP-MS-data on sulfide phases, Miner. Deposita, 2009, vol. 44, pp. 523–557.

    Article  Google Scholar 

  • Melekestseva, I.Yu., Kotlyarov, V.A., Khvorov, P.V., et al., Noble-metal mineralization in the Semenov-2 hydrothermal field (13°31' N), Mid-Atlantic Ridge, Geol. Ore Deposits, 2010, vol. 52, no. 8, pp. 800–810.

    Article  Google Scholar 

  • Mercier-Langevin, P., Dube, B., Becu, V., and Hannington, M.D., The gold content of volcanogenic massive sulfide deposits, Miner. Deposita, 2011, vol. 46, no. 5, pp. 509–539.

    Article  Google Scholar 

  • Moloshag, V.P., Telluride mineralization of sulfide deposits of the Urals: New data, Litosfera, 2011, no. 6, pp. 91–102.

    Google Scholar 

  • Muntean, J.L., Cline, J.S., Simon, A.C., and Longo, A.A., Magmatic-hydrothermal origin of Nevada’s Carlin-type gold deposits, Nat. Geosci., 2011, vol. 4, pp. 122–127.

    Article  Google Scholar 

  • Nature’s Nanostructures, Barnard A.S., Guo H., Eds. Singapore: Pan Stanford Publishing, 2012.

  • Novgorodova, M.I., Gamyanin, G.N., Tsepin, A.I., et al., Typomorphism of gold-bearing sulfides and their mineral assemblages, in Novye dannye o tipomorfizme mineralov (New data on typomorphism of the minerals), Moscow: Nauka, 1980, pp. 44–57.

    Google Scholar 

  • Palenik, C.S., Utsunomia, S., Reich, M., et al., “Invisible” gold revealed: direct imaging of gold nanoparticles in a Carlin-type deposit, Am. Mineral., 2004, vol. 89, pp. 1359–1366.

    Google Scholar 

  • Pals, D.W., Spry, P.G., and Chryssoulis, S., Invisible gold and tellurium in arsenic-rich pyrite from the Emperor gold deposit, Fiji: Implications for gold distribution and deposition, Econ. Geol., 2003, vol. 98, pp. 479–493.

    Google Scholar 

  • Petersen, S., Herzig, P.M., Hannington, M.D., et al., Submarine gold mineralization near Lihir Island, New Irland Fore-Arc, Papua New Guinea, Econ. Geol., 2002, vol. 97, no. 8, pp. 1795–1814.

    Google Scholar 

  • Petrovskaya, N.V. and Kas’yanov, A.V., Some features of mineralogy and genesis of the Uchaly deposit, South Urals, Proc. TsNIGRI, 1960, no. 37, pp. 55–94.

    Google Scholar 

  • Petrovskaya, N.V., Samorodnoe zoloto (Native gold), Moscow: Nauka, 1973.

    Google Scholar 

  • Prokin, V.A. and Buslaev, F.P., Massive copper-zinc sulfide deposits in the Urals, Ore Geol. Rev., 1999, vol. 14, pp. 1–69.

    Article  Google Scholar 

  • Reich, M., Kesler, S.E., Utsunomiya, S., et al., Solubility of gold in arsenian pyrite, Geochim. Cosmochim. Acta, 2005, vol. 69, pp. 2781–2796.

    Article  Google Scholar 

  • Reich, M., Deditius, A., Chryssoulis, S., et al., Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study, Geochim.Cosmochim. Acta, 2013, vol. 104, pp. 42–62.

    Article  Google Scholar 

  • Revan, M.K., Genç, Y., Maslennikov, V.V., et al., Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey), Ore Geol. Rev., 2014, vol. 63, pp. 129–149.

    Article  Google Scholar 

  • Ryan, C.G., Siddons, D.P., Kirkham, R., et al., The Maia detector array and x-ray fluorescence imaging system: Locating rare precious metal phases in complex samples, Proc. SPIE 8851: 88510Q. 2013. DOI:10.1117/12.2027195

    Article  Google Scholar 

  • Simon, G., Huang, H., Penner-Hahn, J.E., et al., Oxidation state of gold and arsenic in gold-bearing arsenian pyrite, Am. Mineral., 1999a, vol. 84, pp. 1071–1079.

    Google Scholar 

  • Simon, G., Kesler, S.E., and Chryssoulis, S., Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada: Implications for deposition of gold in Carlin-type deposits, Econ. Geol., 1999b, vol. 94, pp. 405–422.

    Article  Google Scholar 

  • Sung, Y.H., Brugger, J., Ciobanu, C.L., et al., Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia, Miner. Deposita, 2009, vol. 44, pp. 765–791.

    Article  Google Scholar 

  • Tagirov, B.R., Dikov, Yu.P., Buleev, M.I., et al., “Invisible” gold in covellite (CuS): Synthesis and studies by EPMA, LA–ICP–MS, and XPS techniques, Dokl. Earth. Sci., 2014, vol. 459, no. 1, pp. 1381–1386.

    Article  Google Scholar 

  • Tauson, V.L., Pastushkova, T.M., and Bessarabova, O.I., On the limit and speciation of gold in hydrothermal pyrite, Geol. Geofiz., 1998, vol. 39, no. 7, pp. 924–933.

    Google Scholar 

  • Tauson, V.L., Gold solubility in the common gold-bearing minerals: Experimental evaluation and application to pyrite, Eur. J. Mineral., 1999, vol. 11, no. 6, pp. 937–947.

    Article  Google Scholar 

  • Tauson, V.L., Babkin, D.N., Pastushkova, T.M., et al., Dualistic distribution coefficients of elements in the system mineral–hydrothermal solution. I. Gold accumulation in pyrite, Geochem. Int., 2011, vol. 49, no. 6, pp. 568–577.

    Article  Google Scholar 

  • Tauson, V.L., Babkin, D.N., Akimov, V.V., et al., Microelements as indicators of physicochemical conditions of the mineral formation in the hydrothermal sulfide systems, Geol. Geofiz., 2013, vol. 54, no. 5, pp. 687–706.

    Google Scholar 

  • Tauson, V.L., Kravtsova, R.G., Smagunov, N.V., et al., Structural ad surface-bond gold in pyrite from deposits of various genetic types, Geol. Geofiz., 2014, vol. 55, no. 2, pp. 350–369.

    Google Scholar 

  • Vaughan, J.P. and Kyin, A., Refractory gold ores in Archean greenstones, Western Australia: Mineralogy, gold paragenesis, metallurgical characterization and classification, Mineral. Mag., 2004, vol. 68, pp. 255–277.

    Article  Google Scholar 

  • Vikentyev, I.V., Usloviya formirovaniya i metamorfizm kolchedannykh rud (Conditions of the formation and metamorphism of massive sulfide ores), Moscow: Nauchnyi mir, 2004.

    Google Scholar 

  • Vikent’ev, I.V., Moloshag, V.P., and Yudovskaya, M.A., Speciation of noble metals and conditions of their concentration in massive sulfide ores of the Urals, Geol. Ore Deposits, 2006, vol. 48, no. 2, pp. 77–107.

    Article  Google Scholar 

  • Vikent’ev, I.V., Karpukhina, V.S., Shishakova, L.N., et al., Conditions of the formation of the Uchaly sulfide deposit (South Urals), Proc. Int. Akad. Chukhrov Sci. Conf., (Moscow: IGEM, 2008), pp. 46–49.

    Google Scholar 

  • Vikent’ev, I.V., Rusinov, V.L., Rusinova, O.V., et al., The new Galkinsk gold–base-metal deposit in the North Urals, Proc. Rus. Conf., Moscow: IGEM, 2010, pp. 215–216.

    Google Scholar 

  • Vikentyev, I.V., Abramova, V.D., and Moloshag, V.P., Su Shangguo. PGE in minerals of volcanogenic massive sulfide deposits of the Urals: Ore geochemistry and first LAICP-MS data, Abs. 12th Int. Platinum Symp., Yekaterinburg, 2014, pp. 326–327.

    Google Scholar 

  • Vikentyev, I.V., Yudovskaya, M.A., Mokhov, A.V., et al., Gold and PGE in sulfide massive sulphide ore of the Uzelginsk deposit, Southern Urals, Russia, Can. Mineral., 2004, vol. 42, no. 5, pp. 651–665.

    Article  Google Scholar 

  • Vikentyev, I.V., Precious metal and telluride mineralogy of large volcanic-hosted massive sulfide deposits in the Urals, Mineral. Petrol, 2006, vol. 87, pp. 305–326.

    Article  Google Scholar 

  • Vinokurov, S.F., Vikent’ev, I.V., and Sychkova, V.A., Determining ionic gold species in massive sulfide ores, Geochem. Int., 2010, vol. 48, no. 5, pp. 505–509.

    Article  Google Scholar 

  • Wagner, F.E., Marion, P., Regward, J.R., et al., Möesbauer study of chemical state of gold in ores, Gold. Proc. Conf. on Gold Extractive Metallurgy, Johannesburg: South African Ins. Min. Metal., 1986, vol. 20, pp. 435–443.

    Google Scholar 

  • Wagner, T., Klemd, R., Wenzel, T., and Mattsson, B., Gold upgrading in metamorphosed massive sulfide ore deposits: Direct evidence from laser-ablation-inductively coupled plasma-mass spectrometry analysis of invisible gold, Geology, 2007, vol. 35, pp. 775–778.

    Article  Google Scholar 

  • Ye, J., Shi, X.F., Yang, Y.M., et al., The occurrence of gold in hydrothermal sulfide at Southwest Indian ridge 49.6° E, Acta Oceanol. Sin., 2012, vol. 31, no. 6, pp. 72–82.

    Article  Google Scholar 

  • Zachariáš, J. and Frýda, J., Paterová B., Mihaljevi M., Arsenopyrite and As-bearing pyrite from the Roudny deposit, Bohemian Massif, Mineral. Mag., 2004, vol. 68, no. 1, pp. 31–46.

    Article  Google Scholar 

  • Zaikov, V.V. and Melekestseva, I.Yu., Minerals of gold and silver in the ore facies in gold–sulfide–base-metal deposits of the Baimak ore region, South Urals, Litosfera, 2011, no. 6, pp. 47–67.

    Google Scholar 

  • Zhmodik, S.M., Verkhovtseva, N.V., Nesterenko, V.F., et al., Experimental study of gold redistribution in a shockmetamorphosed pyrite–quartz mixture with the use of the 195Au radionuclide, Geochem. Int., 2004, vol. 42, no. 12, pp. 1159–1153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Vikentyev.

Additional information

Original Russian Text © I.V. Vikentyev, 2015, published in Geologiya Rudnykh Mestorozhdenii, 2015, Vol. 57, No. 4, pp. 267–298.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikentyev, I.V. Invisible and microscopic gold in pyrite: Methods and new data for massive sulfide ores of the Urals. Geol. Ore Deposits 57, 237–265 (2015). https://doi.org/10.1134/S1075701515040054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701515040054

Keywords

Navigation