Skip to main content
Log in

Synthesis and Evaluation of Pyrazole Derivatives as Potent Antinemic Agents

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Pyrazole derivatives were synthesized by bromination of pyrazole, followed by N-alkylation of 4-bromopyrazole. The synthesized derivatives were characterized by microanalytical data and IR and 1H and 13C NMR spectra and were evaluated for their nematicidal activity against the root knot nematode Meloidogyne incognita. The compounds were screened for their egg hatch inhibition and mortality potential, and they showed significant nematicidal activity as compared to the control. 1H-Pyrazol-5(4H)-one was found to be most effective in egg hatch inhibition, and 4-bromopyrazole was found to be most effective in juvenile mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma, A., Singh, S., and Utreja, D., Curr. Org. Synth., 2016, vol. 13, p. 484. https://doi.org/10.2174/1570179412666150905002356

    Article  CAS  Google Scholar 

  2. Anamika, Utreja, D., Ekta, Jain, N., and Sharma, S., Curr. Org. Chem., 2018, vol. 22, p. 2507. https://doi.org/10.2174/1385272822666181029102140

    Google Scholar 

  3. Sharath, V., Kumar, H.V., and Naik, N., J. Pharm. Res., 2013, vol. 6, p. 785. https://doi.org/10.1016/j.jopr.2013.07.002

    CAS  Google Scholar 

  4. Kaur, J., Utreja, D., Ekta, Jain, N., and Sharma, S., Curr. Org. Synth., 2019, vol. 16, p. 17. https://doi.org/10.2174/1570179415666181113144939

    Article  CAS  Google Scholar 

  5. Arora, P., Arora, V., Lamba, H.S., and Wadhwa, D., Int. J. Pharm. Sci. Res., 2012, vol. 3, p. 2947. https://doi.org/10.13040/IJPSR.0975-8232.3(9).2947-54

    Google Scholar 

  6. Yang, Y., Kuang, C., Jin, H., Yang, Q., and Zhang, Z., Beilstein J. Org. Chem., 2011, vol. 7, p. 1656. https://doi.org/10.3762/bjoc.7.195

    Article  CAS  Google Scholar 

  7. Gürsoy, A., Demirayak, S., Çapan, G., Erol, K., and Vural, K., Eur. J. Med. Chem., 2000, vol. 35, p. 359. https://doi.org/10.1016/s0223-5234(00)00117-3

    Article  Google Scholar 

  8. Cottineau, B., Toto, P., Marot, C., Pipaud, A., and Chenault, J., Bioorg. Med. Chem. Lett., 2002, vol. 12, p. 2105. https://doi.org/10.1016/S0960-894X(02)00380-3

    Article  CAS  Google Scholar 

  9. El-Emary, T.I., J. Chin. Chem. Soc., 2006, vol. 53, p. 391. https://doi.org/10.1002/jccs.200600050

    Article  CAS  Google Scholar 

  10. Abdel-Aziz, M., Abuo-Rahma, G.E.A., and Hassan, A.A., Eur. J. Med. Chem., 2009, vol. 44, p. 3480. https://doi.org/10.1016/j.ejmech.2009.01.032

    Article  CAS  Google Scholar 

  11. Souza, F.R., Souza, V.T., Ratzlaff, V., Borges, L.P., Oliveira, M.R., Bonacorso, H.G., Zanatta, N., Martins, M.A.P., and Mello, C.F., Eur. J. Pharmacol., 2002, vol. 451, p. 141. https://doi.org/10.1016/S0014-2999(02)02225-2

    Article  CAS  Google Scholar 

  12. Balbi, A., Anzaldi, M., Macciò, C., Aiello, C., Mazzei, M., Gangemi, R., Castagnola, P., Miele, M., Rosano, C., and Viale, M., Eur. J. Med. Chem., 2011, vol. 46, p. 5293. https://doi.org/10.1016/j.ejmech.2011.08.014

    Article  CAS  Google Scholar 

  13. Tanitame, A., Oyamada, Y., Ofuji, K., Fujimoto, M., Iwai, N., Hiyama, Y., Suzuki, K., Ito, H., Terauchi, H., Kawasaki, M., Nagai, K., Wachi, M., and Yamagishi, J., J. Med. Chem., 2004, vol. 47, p. 3693. https://doi.org/10.1021/jm030394f

    Article  CAS  Google Scholar 

  14. Vijesh, A.M., Isloor, A.M., Shetty, P., Sundershan, S., and Fun, H.K., Eur. J. Med. Chem., 2013, vol. 62, p. 410. https://doi.org/10.1016/j.ejmech.2012.12.057

    Article  CAS  Google Scholar 

  15. Nayak, N., Ramprasad, J., and Dalimba, U., Bioorg. Med. Chem. Lett., 2015, vol. 25, p. 5540. https://doi.org/10.1016/j.bmcl.2015.10.057

    Article  CAS  Google Scholar 

  16. Schöffski, P., Cann, T.V., and Cornillie, J., Expert Opin. Orphan Drugs, 2017, vol. 5, p. 445. https://doi.org/10.1080/21678707.2017.1316190

    Article  Google Scholar 

  17. Goldenberg, M.M., Clin. Ther., 1999, vol. 21, p. 1497. https://doi.org/10.1016/s0149-2918(00)80005-3

    Article  CAS  Google Scholar 

  18. Francis, S.H. and Corbin, J.D., Expert Opin. Drug Metab. Toxicol., 2005, vol. 1, p. 283. https://doi.org/10.1517/17425255.1.2.283

    Article  CAS  Google Scholar 

  19. Oka, Y., Nacar, S., Putievsky, E., Ravid, U., Yaniv, Z., and Spiegel, Y., Phytopathology, 2000, vol. 90, p. 710. https://doi.org/10.1094/PHYTO.2000.90.7.710

    Article  CAS  Google Scholar 

  20. Jones, J.T., Haegeman, A., Danchin, E.G.J., Gaur, H.S., Helder, J., Jones, M.G.K., Kikuchi, T., Manzanilla-Lopez, R., Palomares-Rius, J.E., Wesemael, W.M.L., and Perry, R.N., Mol. Plant Pathol., 2013, vol. 14, p. 946. https://doi.org/10.1111/mpp.12057

    Article  Google Scholar 

  21. Kaur, J., Utreja, D., Dhillon, N.K., and Sharma, S., Lett. Org. Chem., 2018, vol. 15, p. 870. https://doi.org/10.2174/1570178615666180330155049

    Article  CAS  Google Scholar 

  22. Ekta, Utreja, D., and Dhillon, N.K., Lett. Org. Chem., 2014, vol. 11, p. 116. https://doi.org/10.2174/15701786113106660076

    Article  CAS  Google Scholar 

  23. Dutta, T.K., Khan, M.R., and Phani, V., Curr. Plant Biol., 2019, vol. 17, p. 17. https://doi.org/10.1016/j.cpb.2019.02.001

    Article  Google Scholar 

  24. Trudgill, D.L. and Blok, V.C., Annu. Rev. Phytopathol., 2001, vol. 39, p. 53. https://doi.org/10.1146/annurev.phyto.39.1.53

    Article  CAS  Google Scholar 

  25. Wang, G., Chen, X., Chang, Y., Du, D., Li, Z., and Xu, X., Chin. Chem. Lett., 2015, vol. 26, p. 1502. https://doi.org/10.1016/j.cclet.2015.10.024

    Article  CAS  Google Scholar 

  26. Zhao, Z. and Wang, Z., Synth. Commun., 2007, vol. 37, p. 137. https://doi.org/10.1080/00397910600978549

    Article  CAS  Google Scholar 

  27. Singh, K., Arora, D., Poremsky, E., Lowery, J., and Moreland, R.S., Eur. J. Med. Chem., 2009, vol. 44, p. 1997. https://doi.org/10.1016/j.ejmech.2008.10.002

    Article  CAS  Google Scholar 

  28. Kaur, J., Utreja, D., Dhillon, N.K., and Sharma, S., Lett. Org. Chem., 2019, vol. 16, p. 759. https://doi.org/10.2174/1570178616666190219131042

    Article  CAS  Google Scholar 

  29. Jain, N., Utreja, D., and Dhillon, N.K., Russ. J. Org. Chem., 2019, vol. 55, p. 845. https://doi.org/10.1134/S1070428019060150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Sophisticated Analytical Instrumentation Facility, Panjab University, Chandigarh, for the analysis of compounds reported in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Utreja.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Utreja, D., Jain, N. et al. Synthesis and Evaluation of Pyrazole Derivatives as Potent Antinemic Agents. Russ J Org Chem 56, 113–118 (2020). https://doi.org/10.1134/S1070428020010182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428020010182

Keywords

Navigation