Skip to main content
Log in

The Formation of Dense Composite Materials Al2O3–SiCw

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Dense composite materials Al2O3–SiCw with a whisker volume fraction of up to 30 vol% were formed by the methods of liquid-phase sintering and hot pressing. In the presence of 10 vol % SiCw, the density of liquid-phase sintered and hot-pressed materials is decreased to 97.3 and 98.0% of the theoretical density, respectively. For liquid-phase sintered materials, the compositions Al2O3 20 vol % SiCw have maximum characteristics: σben = 416 ± 15 MPa and K1C = 4.74 ± 0.12 MPa m1/2. The introduction of 30 vol % SiCw impedes active compaction of the materials (ρrel = 89.3% of the theoretical density). For hot-pressed materials, the highest characteristics were determined at 30 vol % SiCw : σben = 774 ± 15 MPa and K1C = 5.94 ± 0.12 MPa m1/2. For higher volume fractions, the strength of the Al2O3–SiCw composite materials decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ando, K., Kim, B.S., Chu, M.C., Saito, S., and Takahashi, K., Fatigue Fract. Eng. Mater. Struct., 2004, vol. 27, no. 7, pp. 533–541. https://doi.org/10.1111/j.1460-2695.2004.00785.x

    Article  CAS  Google Scholar 

  2. Liu, S.P., Ando, K., Kim, B.S., and Takahashi, K., Int. Commun. Heat Mass Transfer, 2009, vol. 36, no. 6, pp. 563–568. https://doi.org/10.1016/j.icheatmasstransfer.2009.03.005

    Article  CAS  Google Scholar 

  3. Schuldies, J.J. and Nageswaran, R., Blast Prot. Civ. Infrastructures Vehicles Using Compos., 2010, pp. 235–243. https://doi.org/10.1533/9781845698034.2.235

    Article  Google Scholar 

  4. Pozhidaev, S.S., Seleznev, A.E., Pinargote, N.W.S., and Peretyagin, P.Y., Mech. Ind., 2015., vol. 16, no. 7, pp. 710–715. https://doi.org/10.1051/meca/2015084

    Article  Google Scholar 

  5. Fu, Y.Q., Gu, Y.W., and Du, H., Scripta Mater., 2001, vol. 44, no. 1, pp. 111–116.

    Article  CAS  Google Scholar 

  6. Ye, F., Lei, T.C., and Zhou, Y., Mater. Sci. Eng. A, 2000, vol. 281, nos. 1–2, pp. 305–309. https://doi.org/10.1016/S0921-5093(99)00714-5

    Article  Google Scholar 

  7. Takahashi, K., Yokouchi, M., Lee, S.K., and Ando, K., J. Am. Ceram. Soc., 2003, vol. 86, no. 12, pp. 2143–2147. https://doi.org/10.1111/j.1151-2916.2003.tb03622.x

    Article  CAS  Google Scholar 

  8. Lee, S.K., Takahashi, K., Yokouchi, M., Suenaga, H., and Ando, K., J. Am. Ceram. Soc., 2004, vol. 87, no. 7, pp. 1259–1264. https://doi.org/10.1111/j.1151-2916.2004.tb07720.x

    Article  CAS  Google Scholar 

  9. Perevislov, S.N., Glass Ceram., 2013, vol. 70, nos. 7–8, pp. 265–268. https://doi.org/10.1007/s10717-013-9557-y

    Article  CAS  Google Scholar 

  10. Frolova, M.G., Kargin, Y.F., Lysenkov, A.S., Perevislov, S.N., Kim, K.A., Leonov, A.V., Istomina, E.I., Istomin, P.V., and Tomkovich, M.V., IOP Conf. Ser.: Mater. Sci. Eng., IOP Publ., 2019, vol. 525, no. 1, pp. 012085. https://doi.org/10.1088/1757-899X/525/1/012085

    Article  CAS  Google Scholar 

  11. Sacks, M.D., Lee, H.W., and Rojas, O.E., 12th Annual Conf. Compos. Adv. Ceram. Mater., Part 1, Wiley, 2009, vol. 104, pp. 741–754.

    Google Scholar 

  12. Kim, Y.W. and Lee, J.G., J. Mater. Sci., 1991, vol. 26, no. 5, pp. 1316–1320. https://doi.org/10.1007/BF00544471

    Article  CAS  Google Scholar 

  13. Bertram, B. and Gerhardt, R.A., Properties and applications of ceramic composites containing silicon carbide whiskers, in: Properties and Applications of Silicon Carbide, Gerhardt, R., Ed., Intechopen, 2011. https://doi.org/10.5772/615

    Book  Google Scholar 

  14. Perevislov, S.N., Panteleev, I.B., Shevchik, A.P., and Tomkovich, M.V., Refract. Ind. Ceram., 2018, vol. 58, no. 5, pp. 577–582. https://doi.org/10.1007/s11148-018-0148-x 

    Article  CAS  Google Scholar 

  15. Sacks, M.D., Lee, H.W., and Rojas, O.E., J. Am. Ceram. Soc., 1988, vol. 71, no. 5, pp. 370–379. https://doi.org/10.1111/j.1151-2916.1988.tb05056.x

    Article  CAS  Google Scholar 

  16. Perevislov, S.N., Refract. Ind. Ceram., 2019, vol. 60, no. 2, pp. 168–173. https://doi.org/10.1007/s11148-019-00330-0 

    Article  CAS  Google Scholar 

  17. Kim, S.H., Kim, Y.W., and Mitomo, M., J. Mater. Sci., 2003, vol. 38, no. 6, pp. 1117–1121. https://doi.org/10.1023/A:1022812427677

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Perevislov.

Ethics declarations

The author declares than he has no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 5, pp. 674–680, January, 2021 https://doi.org/10.31857/S0044461821050169

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevislov, S.N. The Formation of Dense Composite Materials Al2O3–SiCw. Russ J Appl Chem 94, 674–679 (2021). https://doi.org/10.1134/S1070427221050165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221050165

Keywords:

Navigation