Skip to main content
Log in

High-Temperature Synthesis of Composite Materials Based on MAX Phases in the Cr–Mn–Al–C System

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

High-temperature synthesis of cast composite materials in the Cr–Mn–Al–C system with various ratios between the Cr2AlC MAX phase and chromium and manganese aluminides and carbides was studied. Experiments were performed in a universal 3-L reactor under argon pressure Р = 5 MPa. Mixtures of powders of chromium(III) and manganese(II, IV) oxides and calcium peroxide with aluminum (ASD-I) and carbon were used as a charge. The synthesis features and the phase composition and microstructure of the target products are significantly influenced by the reactant ratio in the charge. At the stoichiometric ratio of the components corresponding to the Cr2AlC phase, a cast composite material consisting of the Cr2AlC MAX phase, chromium carbides Cr7C3 and Cr3C2, and chromium aluminide Cr5Al8 is formed. In the course of combustion of the charge with the component ratio corresponding to the Mn2AlC phase, a cast composite material consisting of manganese carbides (Mn3AlC, Mn0.545Al0.42C0.035) and aluminide (MnAl) is formed. When these compositions are combined in an 0.75 : 0.25 ratio, the final product is a composite material consisting of a solid solution based on the Cr2AlC MAX phase, manganese carbides (Mn3AlC), and chromium aluminides (Cr2Al). When these compositions are combined in an 0.5 : 0.5 ratio, the final product is a composite material consisting of the manganese-doped Cr2AlC MAX phase and of manganese (Mn14Al86, Mn22.5Al77.5) and chromium (Cr5Al8) aluminides. The final products were characterized by X-ray diffraction and local microstructural analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Kieffer, R. and Benezovsky, F., Hartmetalle, Vienna: Springer, 1965.

    Book  Google Scholar 

  2. Guilemagy, J.M., Espallargas, N., Suegama, P.H., and Benedetti, A.V., Corr. Sci., 2006, vol. 48, no. 10, pp. 2998–3013. https://doi.org/10.1016/j.corsci.2005.10.016

    Article  CAS  Google Scholar 

  3. Burkhanov, G.S., Milyaev, I.M., and Yusupov, V.S., Perspekt. Mater., 2011, no. 11, pp. 208–215.

    Google Scholar 

  4. Barsoum, M.W., Prog. Solid State Chem., 2000, vol. 28, pp. 201–281. https://doi.org/10.1016/S0079-6786(00)00006-6

    Article  CAS  Google Scholar 

  5. Hettinger, J.D., Lofland, S.E., Finkel, P., Meehan, T., Palma, J., Harrell, K., Gupta, S., Ganguly, A., El-Raghy, T., and Barsoum, M.W., Phys. Rev. B, 2005, vol. 72, ID 115120. https://doi.org/10.1103/PhysRevB.72.115120

    Article  CAS  Google Scholar 

  6. Tian, W.B., Wang, P.L., Zhang, G., Kan, Y., Li, Y., and Yan, D., Scripta Mater., 2006, vol. 54, pp. 841–846. https://doi.org/10.1016/j.scriptamat.2005.11.009

    Article  CAS  Google Scholar 

  7. Lin, Z., Zhou, Y., and Li, M., J. Mater. Sci. Technol., 2007, vol. 23, no. 6, pp. 721–746.

    CAS  Google Scholar 

  8. Schneider, J.M., Sun, Z., Mertens, R., Uestel, F., and Ahuja, R., Solid State Commun., 2004, vol. 130, no. 7, pp. 445–449. https://doi.org/10.1016/j.ssc.2004.02.047

    Article  CAS  Google Scholar 

  9. Tian, W., Vanmeensel, K., Wang, P., Zhang, G., Li, Y., Vleugels, J., and Van der Biest, O., Mater. Lett., 2007, vol. 61, no. 22, pp. 4442–4445. https://doi.org/10.1016/j.matlet.2007.02.023

    Article  CAS  Google Scholar 

  10. Xiao, Li.O., Li, S.B., Song, G., and Sloof, W.G., J. Eur. Ceram. Soc., 2011, vol. 31, no. 8, pp. 1497–1502. https://doi.org/10.1016/j.jeurceramsoc.2011.01.009

    Article  CAS  Google Scholar 

  11. Panigrahi, B.B., Chu, M.C., Kim, Y.I., Cho, S.J., and Gracio, J.J., J. Am. Ceram. Soc., 2010, vol. 93, no. 6, pp. 1530–1533. https://doi.org/10.1111/j.1551-2916.2009.03560.x

    Article  CAS  Google Scholar 

  12. Xiao, D., Zhu, J., Wang, F., and Tang, Y., J. Nanosci. Nanotech., 2015, vol. 15, pp. 7341–7345. https://doi.org/10.1166/jnn.2015.10590

    Article  CAS  Google Scholar 

  13. Duan, X., Shen, L., Jia, D., Zhou, Y., Zwaag, S., and Sloof, W.G., J. Eur. Ceram. Soc., 2015, vol. 35, no. 5, pp. 1393–1400. https://doi.org/10.1016/j.jeurceramsoc.2014.11.008

    Article  CAS  Google Scholar 

  14. Tian, W.B., Sun, Z.M., Du, Y., and Hashimoot, H., Mater. Lett., 2008, vol. 62, no. 23, pp. 3852–3855. https://doi.org/10.1016/j.matlet.2008.05.001

    Article  CAS  Google Scholar 

  15. Jaouen, M., Bugnet, M., Jaouen, N., Ohresser, P., Mauchamp, V., Cabioćh, T., and Rogalev, A., J. Phys.: Condens. Matter, 2014, vol. 26, ID 176002. https://doi.org/10.1088/0953-8984/26/17/176002

    Article  CAS  Google Scholar 

  16. Lin, S., Huang, Y., Zu, L., Kan, X., Lin, J., Song, W., Tong, P., Zhu, X., and Sun, Y., J. Alloys Compd., 2016, vol. 680, pp. 452–461. https://doi.org/10.1016/j.jallcom.2016.04.197

    Article  CAS  Google Scholar 

  17. Hamm, C.M., Bocarsly, J.D., Seward, G., Kramm, U.I., and Birke, C.S., J. Mater. Chem. C, 2017, vol. 5, no. 23, pp. 5700–5708. https://doi.org/10.1039/C7TC00112F

    Article  CAS  Google Scholar 

  18. Merzhanov, A.G., J. Mater. Chem., 2004, vol. 14, no. 12, pp. 1779–1786. https://doi.org/10.1039/B401358C

    Article  CAS  Google Scholar 

  19. Levashov, E.A., Mukasyan, A.S., Rogachev, A.S., and Shtansky, D.V., Int. Mater. Rev., 2016, vol. 62, no. 4, pp. 203–239. https://doi.org/10.1080/09506608.2016.1243291

    Article  CAS  Google Scholar 

  20. Gorshkov, V.A., Miloserdov, P.A., Luginina, M.A., Sachkova, N.V., and Belikova, A.F., Inorg. Mater., 2017, vol. 53, no. 3, pp. 271–277. https://doi.org/10.1134/S0020168517030062 

    Article  CAS  Google Scholar 

  21. Gorshkov, V.A., Miloserdov, P.A., Sachkova, N.V., Luginina, M.A., and Yukhvid, V.I., Russ. J. Non-Ferrous Met., 2018, vol. 59, no. 5, pp. 570–575. https://doi.org/10.3103/S106782121805005X 

    Article  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research (project no. 19-08-00053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Gorshkov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 1, pp. 13–20, January, 2021 https://doi.org/10.31857/S0044461821010023

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkov, V.A., Miloserdov, P.A., Khomenko, N.Y. et al. High-Temperature Synthesis of Composite Materials Based on MAX Phases in the Cr–Mn–Al–C System. Russ J Appl Chem 94, 9–16 (2021). https://doi.org/10.1134/S107042722101002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722101002X

Keywords:

Navigation