Skip to main content
Log in

High-Temperature Synthesis of Cr–Mo–Al–C Materials

  • Published:
Inorganic Materials Aims and scope

Abstract—

We report high-temperature synthesis of cast composite materials in the Cr–Mo–Al–C system. (Cr1 – xMox)2AlC -based materials have been prepared for the first time from a Cr2O3 + MoO3 + Al + C powder mixture by self-propagating high-temperature synthesis in the combustion regime. The synthesis was carried out in a 3-L reactor at an argon pressure of 5 MPa. The composition of the starting mixture has been shown to influence the phase composition and structure of the synthesis products. The synthesized materials contain (Cr1 – xMox)2AlC and (MoxCr1 – x)3Al2C phases of variable composition and secondary chromium and molybdenum carbides and intermetallic phases. The materials have been characterized by X-ray diffraction and electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Barsoum, M.W., The MAX phases: a new class of solids: thermodynamically stable nanolaminates, Prog. Solid State Chem., 2000, vol. 28, pp. 201–281. https://doi.org/10.1016/S0079-6786(00)00006-6

    Article  CAS  Google Scholar 

  2. Hettinger, J.D., Lofland, S.E., Finkel, P., Meehan, T., Palma, J., Harrell, K., Gupta, S., Ganguly, A., El-Raghy, T., and Barsoum, M.W., Electrical transport, thermal transport, and elastic properties of M2AlC (M = Ti, Cr, Nb, and V), Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, pp. 115–120. https://doi.org/10.1103/PhysRevB.72.115120

    Article  CAS  Google Scholar 

  3. Tian, W.B., Wang, P.L., Zhang, G., Kan, Y., Li, Y., and Yan, D., Synthesis and thermal and electrical properties of bulk Cr2AlC, Scr. Mater., 2006, vol. 54, pp. 841–846. https://doi.org/10.1016/j.scriptamat.2005.11.009

    Article  CAS  Google Scholar 

  4. Lin, Z., Zhou, Y., and Li, M., Synthesis, microstructure and property of Cr2AlC, J. Mater. Sci. Technol., 2007, vol. 23, no. 6, pp. 721–746.

    CAS  Google Scholar 

  5. Schneider, J.M., Sun, Z., Mertens, R., Uestel, F., and Ahuja, R., Ab-initio calculations and experimental determination of the structure of Cr2AlC, Solid State Commun., 2004, vol. 130, no. 7, pp. 445–449. https://doi.org/10.1016/j.ssc.2004.02.047

    Article  CAS  Google Scholar 

  6. Tian, W., Vanmeensel, K., Wang, P., Zhang, G., Li, Y., Vleugels, J., and Biest, O., Synthesis and characterization of Cr2AlC ceramics prepared by spark plasma sintering, Mater. Lett., 2007, vol. 61, pp. 4442–4445. https://doi.org/10.1016/j.matlet.2007.02.023

    Article  CAS  Google Scholar 

  7. Xiao Li, O., Li, S.B., Song, G., and Sloof, W.G., Synthesis and thermal stability of Cr2AlC, J. Eur. Ceram. Soc., 2011, vol. 31, pp. 1497–1502. https://doi.org/10.1016/j.jeurceramsoc.2011.01.009

    Article  CAS  Google Scholar 

  8. Panigrahi, B.B., Chu, M.-C., Kim, Y.-I., Cho, S.-J., and Gracio, J.J., Reaction synthesis and pressureless sintering of Cr2AlC powder, Am. Ceram. Soc. Bull., 2010, vol. 93, no. 6, pp. 1530–1533. https://doi.org/10.1111/j.1551-2916.2009.03560.x

    Article  CAS  Google Scholar 

  9. Xiao, D., Zhu, J., Wang, F., and Tang, Y., Synthesis of nano sized Cr2AlC powders by molten salt method, J. Nanosci. Nanotechnol., 2015, vol. 15, no. 9, pp. 7341–7345. https://doi.org/10.1166/jnn.2015.10590

    Article  CAS  PubMed  Google Scholar 

  10. Duan, X., Shen, L., Jia, D., Zhou, Y., Zwaag, S., and Sloof, W.G., Synthesis of high-purity, isotropic or textured Cr2AlC bulk ceramics by spark plasma sintering of pressure-less sintered powders, J. Eur. Ceram. Soc., 2015, vol. 35, no. 5, pp. 1393–1400. https://doi.org/10.1016/j.jeurceramsoc.2014.11.008

    Article  CAS  Google Scholar 

  11. Zhou, Y.C., Meng, F.L., and Zhang, J., New MAX-phase compounds in the V–Cr–Al–C system, J. Am. Ceram. Soc., 2008, vol. 91, pp. 1357–1360. https://doi.org/10.1111/j.1551-2916.2008.02279.x

    Article  CAS  Google Scholar 

  12. Halim, J., Chartier, P., Basyuk, T., Prikhna, T., Caspie, E.N., Barsoum, M.W., and Cabioc’h, T., Structure and thermal expansion of (Crx,V1 – x)n + 1AlCn phases measured by X-ray diffraction, J. Eur. Ceram. Soc., 2017, vol. 37, no. 1, pp. 15–21. https://doi.org/10.1016/j.jeurceramsoc.2016.07.022

    Article  CAS  Google Scholar 

  13. Caspie, E.N., Chartier, P., Porcher, F., Damay, F., and Cabioc’h, T., Ordering of (Cr,V) layers in nanolamellar (Cr0.5V0.5)n + 1AlCn compounds, Mater. Res. Lett., 2015, vol. 3, no. 2, pp. 100–106.

    Article  Google Scholar 

  14. Hamm, C.M., Bocarsly, J.D., Seward, G., Kramm, U.I., and Birke, C.S., Non-conventional synthesis and magnetic properties of MAX phases (Cr/Mn)2AlC and (Cr/Fe)2AlC, J. Mater. Chem., 2017, vol. 5, no. 23, pp. 5700–5708. https://doi.org/10.1039/C7TC00112F

    Article  CAS  Google Scholar 

  15. Liu, Z., Zheng, L., Sun, L., Qian, Y., Wang, J., and Li, M., (Cr2/3Ti1/3)3AlC2 and (Cr5/8Ti3/8)4AlC3: new MAX-phase compounds in Ti–Cr–Al–C system, J. Am. Ceram. Soc., 2014, vol. 97, no. 1, pp. 67–69. https://doi.org/10.1111/jace.12731

    Article  CAS  Google Scholar 

  16. Kim, C., Hwang, S., Ha, J., Kang, S., and Cheong, D., Synthesis of a Cr2AlC–Ti2AlC ternary carbide, J. Ceram. Proc. Res., 2010, vol. 11, no. 1, pp. 82–85.

    Google Scholar 

  17. Karki, A.B., Xiong, Y.M., Vekhter, I., Browne, D., Adams, P.W., Thomas, K.R., Chan, J.Y., Prozorov, R., Kim, H., and Young, D.P., Structure and physical properties of the noncentrosymmetric superconductor Mo3Al2C, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 82, no. 6, paper 064512. https://doi.org/10.1103/PhysRevB.82.064512

  18. Bonalde, I., Kim, H., Prozorov, R., Rojas, C., Rogl, P., and Bauer, E., Evidence for conventional superconducting behavior in noncentrosymmetric Mo3Al2C, Phys. Rev. B: Condens. Matter Mater. Phys., 2011, vol. 84, paper 134506. https://doi.org/10.1103/PhysRevB.84.134506

  19. Merzhanov, A.G., The chemistry of self-propagating high-temperature synthesis, J. Mater. Chem., 2004, vol. 14, no. 12, pp. 1779–1786. https://doi.org/10.1039/B401358C

    Article  CAS  Google Scholar 

  20. Levashov, E.A., Mukasyan, A.S., Rogachev, A.S., and Shtansky, D.V., Self-propagating high-temperature synthesis of advanced materials and coatings, Int. Mater. Rev., 2017, vol. 62, no. 4, pp. 203–239. https://doi.org/10.1080/09506608.2016.1243291

    Article  CAS  Google Scholar 

  21. Łopacinski, M., Puszynski, J., and Lis, J., Synthesis of ternary titanium aluminum carbides using self-propagating high-temperature synthesis technique, J. Am. Ceram. Soc., 2001, vol. 84, no. 12, pp. 3051–3053. https://doi.org/10.1111/j.1151-2916.2001.tb01138.x

    Article  Google Scholar 

  22. Zhu, C.C., Zhu, J., Wu, H., and Lin, H., Synthesis of Ti3AlC2 by SHS and thermodynamic calculation based on first principles, Rare Met., 2015, vol. 34, no. 2, pp. 107–110. https://doi.org/10.1007/s12598-013-0174-2

    Article  CAS  Google Scholar 

  23. Konovalikhin, S.V., Kovalev, D.Yu., Sytschev, A.E., Vadchenko, S.G., and Shchukin, A.S., Formation of nanolaminate structures in the Ti–Si–C system: a crystallochemical study, Int. J. Self-Propag. High-Temp Synth., 2014, vol. 23, no. 4, pp. 217–221. https://doi.org/10.3103/S1061386214040049

    Article  CAS  Google Scholar 

  24. Gorshkov, V.A., Miloserdov, P.A., Luginina, M.A., Sachkova, N.V., and Belikova, A.F., High-temperature synthesis of a cast material with a maximum content of the MAX phase Cr2AlC, Inorg. Mater., 2017, vol. 53, no. 3, pp. 271–277. https://doi.org/10.1134/S0020168517030062

    Article  CAS  Google Scholar 

  25. Gorshkov, V.A., Miloserdov, P.A., Khomenko, N.Yu., and Sachkova, N.V., Production of cast materials based on the Cr2AlC MAX phase by SHS metallurgy using coupled chemical reactions, Russ. J. Non-Ferr. Met., 2020, vol. 61, no. 3, pp. 362–367. https://doi.org/10.3103/S1067821220030086

    Article  Google Scholar 

  26. Gorshkov, V.A., Karpov, A.V., Kovalev, D.Yu., and Sychev, A.E., Synthesis, structure and properties of material based on V2AlC MAX phase, Phys. Met. Metallogr., 2020, vol. 121, no. 8, pp. 765–771 https://doi.org/10.1134/S0031918X20080037

    Article  CAS  Google Scholar 

  27. Sychev, A.E., Gorshkov, V.A., Karpov, A.V., Sachkova, N.V., Kovalev, I.D., and Belikova, A.F., Synthesis and properties of the composite material based on a (V,Cr)AlC solid solution, Phys. Met. Metallogr., 2021, vol. 122, no. 3, pp. 286–292. https://doi.org/10.1134/S0031918X21030145

    Article  CAS  Google Scholar 

  28. Siegrist, T., Crystallographica – a software toolkit for crystallography, J. Appl. Crystallogr., 1997, vol. 30, pp. 418–419. http://www.crystallographica.co.uk.

    Article  Google Scholar 

  29. International Centre for Diffraction Data. http://www.icdd.com/.

  30. Firsova, V.A., Pyatygina, N.G., and Ivanova, T.I., Rietveld method, Computer Program Certificate no. 2010613016, 2010.

  31. Crystallography Open Database. http://www.crystallography.net/cod

  32. Jain, A., Ong, S.P., and Hautier, G., The Materials Project: a materials genome approach to accelerating materials innovation, APL Mater., 2013, vol. 1, no. 1, paper 011002. https://doi.org/10.1063/1.4812323

  33. Bauer, E., Rogl, G., Chen, X.-Q., Khan, R.T., Michor, H., Hilscher, G., Royanian, E., Kumagai, K., Li, D.Z., Li, Y.Y., Podloucky, R., and Rogl, P., Unconventional superconducting phase in the weakly correlated noncentrosymmetric Mo3Al2C compound, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 82, paper 064511. https://doi.org/10.1103/PhysRevB.82.064511

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Gorshkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkov, V.A., Kovalev, D.Y., Boyarchenko, O.D. et al. High-Temperature Synthesis of Cr–Mo–Al–C Materials. Inorg Mater 57, 1300–1306 (2021). https://doi.org/10.1134/S0020168521120074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521120074

Keywords:

Navigation