Skip to main content
Log in

On the Possibility of a Radical Increase in Thermal Conductivity by Dispersed Particles

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Theoretical and experimental data on the effect of additions of micro- and nanosized solid particles on the thermal conductivity of liquid media (nanofluids) are considered. According to theoretical calculations, a manifold increase in the thermal conductivity is possible only for resting media in which percolation structures are formed from the modifier nanoparticles, whereas in the case of the coolant circulation and/or random distribution of particles in its volume the increase in the thermal conductivity cannot increase several tens of percents. The primary factors for increasing the thermal conductivity are high volume fraction of particles and isotropicity of their properties, whereas the specific thermal conductivity of the particle material is not a key factor. The available experimental data were obtained using different measurement methods and different dispersions whose structure was not duly controlled. Therefore, the data are characterized by large scatter, which does not allow unambiguous identification of the acting averaging law, although the majority of data are characterized by positive deviation from Maxwell’s law. On the other hand, the available data do not exceed the values expected on the basis of the rule of logarithmic additivity of the component thermal conductivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. Publication permission of October 2, 2020, © 1958 American Chemical Society.

  2. Publication permission of October 2, 2020, © 2007 Elsevier.

REFERENCES

  1. Levenspiel, O., Engineering Flow and Heat Exchange, New York: Springer, 2014, pp. 179–208.

    Google Scholar 

  2. Faghri, A. and Zhang, Y., Fundamentals of Multiphase Heat Transfer and Flow, Berlin: Springer, 2020.

    Book  Google Scholar 

  3. Maxwell, J.C., A Treatise on Electricity and Magnetism, Oxford (UK): Clarendon, 1881, vol. 1.

    Google Scholar 

  4. Das, S.K., Choi, S.U.S., and Patel, H.E., Heat Transfer Eng., 2006, vol. 27, no. 10, pp. 3–19. https://doi.org/10.1080/01457630600904593

    Article  CAS  Google Scholar 

  5. Choi, S.U.S. and Eastman, J.A., in Int. Mechanical Engineering Congr. and Exhibition, San Francisco, CA (USA), Nov. 12–17, 1995.

  6. Lee, S., Choi, S.U.S., Li, S., and Eastman, J.A., J. Heat Transfer, 1999, vol. 121, no. 2, pp. 280–289. https://doi.org/10.1115/1.2825978

    Article  CAS  Google Scholar 

  7. Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., and Thompson, L.J., Appl. Phys. Lett., 2001, vol. 78, no. 6, pp. 718–720. https://doi.org/10.1063/1.1341218

    Article  CAS  Google Scholar 

  8. Xuan, Y. and Li, Q., Int. J. Heat Fluid Flow, 2000, vol. 21, no. 1, pp. 58–64. https://doi.org/10.1016/S0142-727X(99)00067-3

    Article  CAS  Google Scholar 

  9. Choi, S.U.S., Zhang, Z.G., Lockwood, F.E., and Grulke, E.A., Appl. Phys. Lett., 2001, vol. 79, no. 14, pp. 2252–2254. https://doi.org/10.1063/1.1408272

    Article  CAS  Google Scholar 

  10. Choi, S.U.S., Zhang, Z.G., and Keblinski, P., Encycl. Nanosci. Nanotechnol., 2004, vol. 6, pp. 757–773.

    CAS  Google Scholar 

  11. Zussman, S., in Technol. Transfer Highlights, Argonne National Laboratory (USA), 1997, vol. 8, p. 4

    Google Scholar 

  12. Yu, W., France, D.M., Routbort, J.L., and Choi, S.U.S., Heat Transfer Eng., 2008, vol. 29, no. 5, pp. 432–460. https://doi.org/10.1080/01457630701850851

    Article  CAS  Google Scholar 

  13. Devendiran, D.K. and Amirtham, V.A., Renew. Sustain. Energy Rev., 2016, vol. 60, pp. 21–40. https://doi.org/10.1016/j.rser.2016.01.055

    Article  CAS  Google Scholar 

  14. Jabbari, F., Rajabpour, A., and Saedodin, S., Chem. Eng. Sci., 2017, vol. 174, pp. 67–81. https://doi.org/10.1016/j.ces.2017.08.034

    Article  CAS  Google Scholar 

  15. Ganvir, R.B., Walke, P.V., and Kriplani, V.M., Renew. Sustain. Energy Rev., 2017, vol. 75, pp. 451–460. https://doi.org/10.1016/j.rser.2016.11.010

    Article  Google Scholar 

  16. Ahmadi, M.H., Mirlohi, A., Nazari, M.A., and Ghasempour, R., J. Mol. Liq., 2018, vol. 265, pp. 181–188. https://doi.org/10.1016/j.molliq.2018.05.124

    Article  CAS  Google Scholar 

  17. Sajid, M.U. and Ali, H.M., Int. J. Heat Mass Transfer, 2018, vol. 126, pp. 211–234. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.021

    Article  CAS  Google Scholar 

  18. Sajid, M.U. and Ali, H.M., Renew. Sustain. Energy Rev., 2019, vol. 103, pp. 556–592. https://doi.org/10.1016/j.rser.2018.12.057

    Article  CAS  Google Scholar 

  19. Simpson, S., Schelfhout, A., Golden, C., and Vafaei, S., Appl. Sci., 2019, vol. 9, no. 1, pp. 87–142. https://doi.org/10.3390/app9010087

    Article  CAS  Google Scholar 

  20. Sezer, N., Atieh, M.A., and Koç, M., Powder Technol., 2019, vol. 344, pp. 404–431. https://doi.org/10.1016/j.powtec.2018.12.016

    Article  CAS  Google Scholar 

  21. Yang, L., Ji, W., Huang, J.N., and Xu, G., J. Mol. Liq., 2019, vol. 296, ID 111780. https://doi.org/10.1016/j.molliq.2019.111780

    Article  CAS  Google Scholar 

  22. Maxwell, J.C., A Treatise on Electricity and Magnetism, Cambridge: Oxford Univ. Press, 1904.

    Google Scholar 

  23. von Bruggeman, D.A.G., Ann. Phys. (Berlin), 1935, vol. 416, no. 7, pp. 636–664. https://doi.org/10.1002/andp.19354160705

    Article  Google Scholar 

  24. Hamilton, R.L. and Crosser, O.K., Ind. Eng. Chem. Fundam., 1962, vol. 1, no. 3, pp. 187–191. https://doi.org/10.1021/i160003a005

    Article  CAS  Google Scholar 

  25. Rayleigh, L., Philos. Mag., 1892, vol. 34, no. 211, pp. 481–502. https://doi.org/10.1017/CBO9780511703997.005

    Article  Google Scholar 

  26. Schwan, H.P., Schwarz, G., Maczuk, J., and Pauly, H., J. Phys. Chem., 1962, vol. 66, no. 12, pp. 2626–2635. https://doi.org/10.1021/j100818a066

    Article  CAS  Google Scholar 

  27. Lu, S.-Y. and Song, J.-L., J. Appl. Phys. (Melville, NY), 1996, vol. 79, no. 2, pp. 609–618. https://doi.org/10.1063/1.360803

    Article  Google Scholar 

  28. Xue, Q., J. Mater. Sci. Technol. (Shenyang), 2000, vol. 16, pp. 367–369.

    CAS  Google Scholar 

  29. Hasselman, D.P.H. and Johnson, L.F., J. Compos. Mater., 1987, vol. 21, no. 6, pp. 508–515. https://doi.org/10.1177/002199838702100602

    Article  Google Scholar 

  30. Gitterman, M., Phys. Rev. E, 1995, vol. 52, no. 1, pp. 303–306. https://doi.org/10.1103/PhysRevE.52.303

    Article  CAS  Google Scholar 

  31. Wojnar, R., Acta Phys. Pol. B, 2001, vol. 32, no. 2, pp. 333–349.

    CAS  Google Scholar 

  32. Jang, S.P. and Choi, S.U.S., Appl. Phys. Lett., 2004, vol. 84, no. 21, pp. 4316–4318. https://doi.org/10.1063/1.1756684

    Article  CAS  Google Scholar 

  33. Wang, X., Xu, X., and Choi, S.U.S., J. Thermophys. Heat Transfer, 1999, vol. 13, no. 4, pp. 474–480. https://doi.org/10.2514/2.6486

    Article  CAS  Google Scholar 

  34. Yu, W., Hull, J.H., and Choi, S.U.S., Stable and highly conductive nanofluids—experimental and theoretical studies, Proc. 6th ASME–JSME Thermal Engineering Joint Conf., Hawaiian Islands, New York, March 16–23, 2003, no. TED-AJ03-384, ASME.

  35. Henderson, J.R. and van Swol, F., Mol. Phys., 1984, vol. 51, no. 4, pp. 991–1010. https://doi.org/10.1080/00268978400100651

    Article  CAS  Google Scholar 

  36. Keblinski, P., Phillpot, S.R., Choi, S.U.S., and Eastman, J.A., Int. J. Heat Mass Transfer, 2002, vol. 45, no. 4, pp. 855–863. https://doi.org/10.1016/S0017-9310(01)00175-2

    Article  CAS  Google Scholar 

  37. Nan, C.W., Liu, G., Lin, Y., and Li, M., Appl. Phys. Lett., 2004, vol. 85, no. 16, pp. 3549–3551. https://doi.org/10.1063/1.1808874

    Article  CAS  Google Scholar 

  38. Xue, L., Phillpot, S.R., Choi, S.U.S., and Eastman, J.A., Int. J. Heat Mass Transfer, 2004, vol. 47, nos. 19–20, pp. 4277–4284. https://doi.org/10.1016/j.ijheatmasstransfer.2004.05.016

    Article  Google Scholar 

  39. Wang, B., Zhou, L., and Peng, X., Int. J. Heat Mass Transfer, 2003, vol. 46, no. 14, pp. 2665–2672. https://doi.org/10.1016/S0017-9310(03)00016-4

    Article  CAS  Google Scholar 

  40. Gao, J.W., Zheng, R.T., Ohtani, H., Zhu, D.S., and Chen, G., Nano Lett., 2009, vol. 9, no. 12, pp. 4128–4132. https://doi.org/10.1021/nl902358m

    Article  CAS  PubMed  Google Scholar 

  41. Gharagozlooo, P.E., Eaton, J.K., and Goodson, K.E., Аppl. Phys. Lett., 2008, vol. 93, no. 10, ID 103110. https://doi.org/10.1063/1.2977868

    Article  CAS  Google Scholar 

  42. Gharagozlooo, P.E. and Goodson, K.E., J. Appl. Phys., 2010, vol. 108, no. 7, pp. 074309. https://doi.org/10.1063/1.3481423

    Article  CAS  Google Scholar 

  43. Boshenyatov, B.V., Tech. Phys. Lett., 2018, vol. 44, no. 2, pp. 94–97. https://doi.org/10.1134/S1063785018020049

    Article  CAS  Google Scholar 

  44. Murshed, S.M.S., Leong, K.C., and Yang, C., Appl. Therm. Eng., 2008, vol. 28, nos. 17–18, pp. 2109–2125. https://doi.org/10.1016/j.applthermaleng.2008.01.005

    Article  CAS  Google Scholar 

  45. Wang, R.H. and Knudsen, J.G., Ind. Eng. Chem., 1958, vol. 50, no. 11, pp. 1667–1670. https://doi.org/10.1021/ie50587a042

    Article  CAS  Google Scholar 

  46. Tareev, B.M., Colloid J., 1940, vol. 6, no. 6, pp. 545–550.

    CAS  Google Scholar 

  47. Ilyin, S.O., Arinina, M.P., Malkin, A.Y., and Kulichikhin, V.G., Colloid J., 2016, vol. 78, no. 5, pp. 608–615. https://doi.org/10.1134/S1061933X16050070 

    Article  CAS  Google Scholar 

  48. Malkin, A.Y., Ilyin, S.O., Arinina, M.P., and Kulichikhin, V.G., Colloid Polym. Sci., 2017, vol. 295, no. 4, pp. 555–563. https://doi.org/10.1007/s00396-017-4046-4

    Article  CAS  Google Scholar 

  49. Gorbacheva, S.N., Yarmush, Y.M., and Ilyin, S.O., Tribol. Int., 2020, vol. 148, ID 106318. https://doi.org/10.1016/j.triboint.2020.106318

    Article  CAS  Google Scholar 

  50. Ignatenko, V.Y., Kostyuk, A.V., Smirnova, N.M., Antonov, S.V., and Ilyin, S.O., Polym. Eng. Sci., 2020, vol. 60, pp. 2224–2234. https://doi.org/10.1002/pen.25465

    Article  CAS  Google Scholar 

  51. Ilyin, S.O., Makarova, V.V., Polyakova, M.Y., and Kulichikhin, V.G., Rheol. Acta, 2020, vol. 59, pp. 375–386. https://doi.org/10.1007/s00397-020-01208-6

    Article  CAS  Google Scholar 

  52. Ilyin, S.O., Makarova, V.V., Polyakova, M.Y., and Kulichikhin, V.G., Mater. Today Commun., 2020, vol. 22, ID 100833. https://doi.org/10.1016/j.mtcomm.2019.100833

    Article  CAS  Google Scholar 

  53. Uriev, N.B., Russ. Chem. Rev., 2004, vol. 73, no. 1, pp. 39–62. https://doi.org/10.1070/RC2004v073n01ABEH000861 

    Article  Google Scholar 

  54. Ilyin, S.O., Malkin, A.Y., Kulichikhin, V.G., Shaulov, A.Y., Stegno, E.V., Berlin, A.A., and Patlazhan, S.A., Rheol. Acta, 2014, vol. 53, nos. 5–6, pp. 467–475. https://doi.org/10.1007/s00397-014-0770-6

    Article  CAS  Google Scholar 

  55. Powell, R.W., Ho, C.Y., and Liley, P.E., Thermal Conductivity of Selected Materials, Washington, DC: US Department of Commerce, National Bureau of Standards, 1966, vol. 8.

    Book  Google Scholar 

  56. Pop, E., Varshney, V., and Roy, A.K., MRS Bull., 2012, vol. 37, no. 12, pp. 1273–1281. https://doi.org/10.1557/mrs.2012.203

    Article  Google Scholar 

  57. Presley, M.A. and Christensen, P.R., J. Geophys. Res.: Planets, 1997, vol. 102, no. E3, pp. 6535–6549. https://doi.org/10.1029/96JE03302

    Article  CAS  Google Scholar 

  58. Braun, J.L., Olson, D.H., Gaskins, J.T., and Hopkins, P.E., Rev. Sci. Instrum., 2019, vol. 90, no. 2, ID 024905. https://doi.org/10.1063/1.5056182

    Article  CAS  PubMed  Google Scholar 

  59. Zhao, D., Qian, X., Gu, X., Jajja, S.A., and Yang, R., J. Electron. Packag., 2016, vol. 138, no. 4, pp. 040802–040821. https://doi.org/10.1115/1.4034605

    Article  CAS  Google Scholar 

  60. Roder, H.M., Perkins, R.A., Laesecke, A., and de Castro, C.A.N., J. Res. Natl. Inst. Stand. Technol., 2000, vol. 105, no. 2, pp. 221–253. https://doi.org/10.6028/jres.105.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Reiter, M. and Hartman, H., J. Geophys. Res., 1971, vol. 76, no. 29, pp. 7047–7051. https://doi.org/10.1029/JB076i029p07047

    Article  CAS  Google Scholar 

  62. Mirkovich, V.V., J. Am. Ceram. Soc., 1965, vol. 48, no. 8, pp. 387–391. https://doi.org/10.1111/j.1151-2916.1965.tb14773.x

    Article  CAS  Google Scholar 

  63. Yang, D.J., Zhang, Q., Chen, G., Yoon, S.F., Ahn, J., Wang, S.G., Zhou, Q., Wang, Q., and Li, J.Q., Phys. Rev. B, 2002, vol. 66, no. 16, pp. 165440–165446. https://doi.org/10.1103/PhysRevB.66.165440

    Article  CAS  Google Scholar 

  64. Kumanek, B. and Janas, D., J. Mater. Sci., 2019, vol. 54, no. 10, pp. 7397–7427. https://doi.org/10.1007/s10853-019-03368-0

    Article  CAS  Google Scholar 

  65. Kleinstreuer, C. and Feng, Y., Nanoscale Res. Lett., 2011, vol. 6, no. 1, pp. 229–242. https://doi.org/10.1186/1556-276X-6-229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zawilski, B.M., Littleton, R.T., IV, and Tritt, T.M., Rev. Sci. Instrum., 2001, vol. 72, no. 3, pp. 1770–1774. https://doi.org/10.1063/1.1347980

    Article  CAS  Google Scholar 

  67. Paul, G., Chopkar, M., Manna, I., and Das, P.K., Renew. Sustain. Energy Rev., 2010, vol. 14, no. 7, pp. 1913–1924. https://doi.org/10.1016/j.rser.2010.03.017

    Article  CAS  Google Scholar 

  68. Nagasaka, Y. and Nagashima, A., J. Phys. E: Sci. Instrum., 1981, vol. 14, pp. 1435–1440. https://doi.org/10.1088/0022-3735/14/12/020

    Article  CAS  Google Scholar 

  69. Assael, M.J., Antoniadis, K.D., and Wakeham, W.A., Int. J. Thermophys., 2010, vol. 31, no. 6, pp. 1051–1072. https://doi.org/10.1007/s10765-010-0814-9

    Article  CAS  Google Scholar 

  70. Assael, M.J., Dix, M., Gialou, K., Vozar, L., and Wakeham, W.A., Int. J. Thermophys., 2002, vol. 23, no. 3, pp. 615–633. https://doi.org/10.1023/A:1015494802462

    Article  CAS  Google Scholar 

  71. Assael, M.J., Antoniadis, K.D., Metaxa, I.N., Mylona, S.K., Assael, J.A.M., Wu, J., and Hu, M., Int. J. Thermophys., 2015, vol. 36, nos. 10–11, pp. 3083–3105. https://doi.org/10.1007/s10765-015-1964-6

    Article  CAS  Google Scholar 

  72. Healy, J.J., De Groot, J.J., and Kestin, J., Physica B+C (Amsterdam), 1976, vol. 82, no. 2, pp. 392–408. https://doi.org/10.1016/0378-4363(76)90203-5

    Article  Google Scholar 

  73. Log, T. and Gustafsson, S.E., Fire Mater., 1995, vol. 19, no. 1, pp. 43–49. https://doi.org/10.1002/fam.810190107

    Article  CAS  Google Scholar 

  74. Czarnetzki, W. and Roetzel, W., Int. J. Thermophys., 1995, vol. 16, no. 2, pp. 413–422. https://doi.org/10.1007/BF01441907

    Article  CAS  Google Scholar 

  75. Das, S.K., Putra, N., Thiesen, P., and Roetzel, W., J. Heat Transfer, 2003, vol. 125, no. 4, pp. 567–574. https://doi.org/10.1115/1.1571080

    Article  CAS  Google Scholar 

  76. Yang, B. and Han, Z.H., Appl. Phys. Lett., 2006, vol. 89, no. 8, ID 083111. https://doi.org/10.1063/1.2338424

    Article  CAS  Google Scholar 

  77. Cahill, D.G., Rev. Sci. Instrum., 1990, vol. 61, no. 2, pp. 802–808. https://doi.org/10.1063/1.1141498

    Article  CAS  Google Scholar 

  78. Lu, L., Yi, W., and Zhang, D.L., Rev. Sci. Instrum., 2001, vol. 72, no. 7, pp. 2996–3003. https://doi.org/10.1063/1.1378340

    Article  CAS  Google Scholar 

  79. Cahill, D.G. and Pohl, R.O., Phys. Rev. B, 1987, vol. 35, no. 8, ID 4067. https://doi.org/10.1103/PhysRevB.35.4067

    Article  CAS  Google Scholar 

  80. Marovelli, R.L. and Veith, K.F., Thermal Conductivity of Rock: Measurement by the Transient Line Source Method, US Department of the Interior, Bureau of Mines, 1965, vol. 6604.

  81. Lobo, H. and Cohen, C., Polym. Eng. Sci., 1990, vol. 30, no. 2, pp. 65–70. https://doi.org/10.1002/pen.760300202

    Article  CAS  Google Scholar 

  82. Putnam, S.A., Cahill, D.G., Braun, P.V., Ge, Z., and Shimmin, R.G., J. Appl. Phys. (Melville, NY), 2006, vol. 99, no. 8, ID 084308. https://doi.org/10.1063/1.2189933

    Article  CAS  Google Scholar 

  83. Krishnamurthy, S., Bhattacharya, P., Phelan, P.E., and Prasher, R.S., Nano Lett., 2006, vol. 6, no. 3, pp. 419–423. https://doi.org/10.1021/nl0522532

    Article  CAS  PubMed  Google Scholar 

  84. Swihart, M.T., Curr. Opin. Colloid Interface Sci., 2003, vol. 8, no. 1, pp. 127–133. https://doi.org/10.1016/S1359-0294(03)00007-4

    Article  CAS  Google Scholar 

  85. Akoh, H., Tsukasaki, Y., Yatsuya, S., and Tasaki, A., J. Cryst. Growth, 1978, vol. 45, pp. 495–500. https://doi.org/10.1016/0022-0248(78)90482-7

    Article  CAS  Google Scholar 

  86. Assael, M.J., Metaxa, I.N., Arvanitidis, J., Christophilos, D., and Lioutas, C., Int. J. Thermophys., 2005, vol. 26, pp. 647–664. https://doi.org/10.1007/s10765-005-5569-3

    Article  CAS  Google Scholar 

  87. Liu, M.S., Lin, C.C.M., Huang, I.T., and Wang, C.C., Int. Commun. Heat Mass Transfer, 2005, vol. 32, no. 9, pp. 1202–1210. https://doi.org/10.1016/j.icheatmasstransfer.2005.05.005

    Article  CAS  Google Scholar 

  88. Hwang, Y.J., Ahn, Y.C., Shin, H.S., Lee, C.G., Kim, G.T., Park, H.S., and Lee, J.K., Curr. Appl. Phys., 2006, no. 6, pp. 1068–1071. https://doi.org/10.1016/j.cap.2005.07.021

    Article  Google Scholar 

  89. Hong, T., Yang, H., and Choi, C.J., J. Appl. Phys. (Melville, NY), 2005, vol. 97, no. 6, ID 064311. https://doi.org/10.1063/1.1861145

    Article  CAS  Google Scholar 

  90. Hong, K.S., Hong, T., and Yang, H., Appl. Phys. Lett., 2006, vol. 88, no. 3, ID 031901. https://doi.org/10.1063/1.2166199

    Article  CAS  Google Scholar 

  91. Choi, S.U.S., FED (Am. Soc. Mech.), 1995, vol. 231, pp. 99–105.

    CAS  Google Scholar 

  92. Murshed, S.M.S., Leong, K.C., and Wang, C., Int. J. Therm. Sci., 2005, vol. 44, no. 4, pp. 367–373. https://doi.org/10.1016/j.ijthermalsci.2004.12.005

    Article  CAS  Google Scholar 

  93. Morozova, M.A. and Novopashin, S.A., Interfacial Phenom. Heat Transfer, 2019, vol. 7, no. 2, pp. 151–165. https://doi.org/10.1615/InterfacPhenomHeatTransfer.2019031015

    Article  Google Scholar 

  94. Bardakhanov, S.P., Novopashin, S.A., and Serebryakova, M.A., Nanosist.: Fiz., Khim., Mat., 2012, vol. 3, no. 1, pp. 27–33.

    Google Scholar 

  95. Yu, W. and Choi, S.U.S., J. Nanopart. Res., 2003, vol. 5, nos. 1–2, pp. 167–171. https://doi.org/10.1023/A:1024438603801

    Article  CAS  Google Scholar 

  96. Eastman, J.A., Phillpot, S.R., Choi, S.U.S., and Keblinski, P., Annu. Rev. Mater. Res., 2004, vol. 34, pp. 219–246. https://doi.org/10.1146/annurev.matsci.34.052803.090621

    Article  CAS  Google Scholar 

  97. Patel, H.E., Das, S.K., Sundararajan, T., Nair, A.S., George, B., and Pradeep, T., Appl. Phys. Lett., 2003, vol. 83, no. 14, pp. 2931–2933. https://doi.org/10.1063/1.1602578

    Article  CAS  Google Scholar 

  98. Liu, M., Lin, M., Tsai, C.Y., and Wang, C., Int. J. Heat Mass Transfer, 2006, vol. 49, pp. 3028–3033. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.012

    Article  CAS  Google Scholar 

  99. Chon, C.H., Kihm, K.D., Lee, S.P., and Choi, S.U.S., Appl. Phys. Lett., 2005, vol. 87, no. 15, ID 153107. https://doi.org/10.1063/1.2093936

    Article  CAS  Google Scholar 

  100. Chon, C.H. and Kihm, K.D., ASME J. Heat Transfer, 2005, vol. 127, no. 8, pp. 810. https://doi.org/10.1115/1.2033316

    Article  Google Scholar 

  101. Xie, H., Wang, J., Xi, T., and Ai, F., J. Appl. Phys. (Melville, NY), 2002, vol. 91, pp. 4568–4572. https://doi.org/10.1063/1.1454184

    Article  CAS  Google Scholar 

  102. Celzard, A., McRae, E., Deleuze, C., Dufort, M., Furdin, G., and Marêché, J.F., Phys. Rev. B, 1996, vol. 53, no. 10, pp. 6209–6214. https://doi.org/10.1103/PhysRevB.53.6209

    Article  CAS  Google Scholar 

  103. Ilyin, S.O., Malkin, A.Y., and Kulichikhin, V.G., Colloid J., 2012, vol. 74, no. 4, pp. 472–482. https://doi.org/10.1134/S1061933X12040072 

    Article  CAS  Google Scholar 

  104. Brantseva, T.V., Ilyin, S.O., Gorbunova, I.Y., Antonov, S.V., Korolev, Y.M., and Kerber, M.L., Int. J. Adhes. Adhes., 2016, vol. 68, pp. 248–255. https://doi.org/10.1016/j.ijadhadh.2016.04.005

    Article  CAS  Google Scholar 

  105. Malkin, A., Ilyin, S., and Kulichikhin, V., Appl. Rheol., 2014, vol. 24, no. 1, pp. 9–18. https://doi.org/10.3933/applrheol-24-13653

    Article  Google Scholar 

  106. Xie, H., Lee, H., Youn, W., and Choi, M., J. Appl. Phys. (Melville, NY), 2003, vol. 94, no. 8, pp. 4967. https://doi.org/10.1063/1.1613374

    Article  CAS  Google Scholar 

  107. Xie, H., Wang, J., Xi, T., and Liu, Y., Int. J. Thermophys., 2002, vol. 23, no. 2, pp. 571–580. https://doi.org/10.1023/A:1015121805842

    Article  CAS  Google Scholar 

  108. Xie, H.Q., Wang, J.C., Xi, T.G., Liu, Y., and Ai, F., J. Mater. Sci. Lett., 2002, vol. 21, pp. 1469–1471. https://doi.org/10.1023/A:1020060324472

    Article  CAS  Google Scholar 

  109. Chung, T.-H., Ajian, M., Lee, L.L., and Starling, K.E., Ind. Eng. Chem. Res., 1988, vol. 27, no. 4, pp. 671–679. https://doi.org/10.1021/ie00076a024

    Article  CAS  Google Scholar 

  110. Assael, M.J., Chen, C.F., Metaxa, I., and Wakeham, W.A., Int. J. Thermophys., 2004, vol. 25, no. 4, pp. 971–985. https://doi.org/10.1023/B:IJOT.0000038494.22494.04

    Article  CAS  Google Scholar 

  111. Ilyin, S.O., Pupchenkov, G.S., Krasheninnikov, A.I., Kulichikhin, V.G., and Malkin, A.Y., Colloid J., 2013, vol. 75, no. 3, pp. 267–273. https://doi.org/10.1134/S1061933X13030071 

    Article  CAS  Google Scholar 

  112. Malkin, A., Ilyin, S., Semakov, A., and Kulichikhin, V., Soft Matter, 2012, vol. 8, no. 9, pp. 2607–2617. https://doi.org/10.1039/C2SM06950D

    Article  CAS  Google Scholar 

  113. Murshed, S.S., De Castro, C.N., Lourenço, M.J.V., Lopes, M.L.M., and Santos, F.J.V., Renew. Sustain. Energy Rev., 2011, vol. 15, no. 5, pp. 2342–2354. https://doi.org/10.1016/j.rser.2011.02.016

    Article  CAS  Google Scholar 

  114. Huminic, G. and Huminic, A., Renew. Sustain. Energy Rev., 2012, vol. 16, no. 8, pp. 5625–5638. https://doi.org/10.1016/j.rser.2012.05.023

    Article  CAS  Google Scholar 

  115. Bashirnezhad, K., Ghavami, M., and Alrashed, A.A., J. Mol. Liq., 2017, vol. 244, pp. 309–321. https://doi.org/10.1016/j.molliq.2017.09.012

    Article  CAS  Google Scholar 

  116. Wen, D. and Ding, Y., Int. J. Heat Mass Transfer, 2004, vol. 47, no. 24, pp. 5181–5188. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012

    Article  CAS  Google Scholar 

  117. Ding, Y., Alias, H., Wen, D., and Williams, A.R., Int. J. Heat Mass Transfer, 2006, vol. 49, no. 12, pp. 240–250. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009

    Article  CAS  Google Scholar 

  118. Pak, B.C. and Cho, Y.I., Exp. Heat Transfer, 1998, vol. 11, no. 2, pp. 151–170. https://doi.org/10.1080/08916159808946559

    Article  CAS  Google Scholar 

  119. Xuan, Y. and Li, Q., J. Heat Transfer, 2003, vol. 125, no. 1, pp. 151–155. https://doi.org/10.1115/1.1532008

    Article  CAS  Google Scholar 

  120. Bang, I.C. and Chang, S.H., Int. J. Heat Mass Transfer, 2005, vol. 48, no. 12, pp. 2407–2419. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047

    Article  CAS  Google Scholar 

  121. Wen, D. and Ding, Y., J. Nanopart. Res., 2005, vol. 7, nos. 2–3, pp. 265–274. https://doi.org/10.1007/s11051-005-3478-9

    Article  CAS  Google Scholar 

  122. Tavman, I., Turgut, A., Chirtoc, M., Schuchmann, H.P., and Tavman, S., Arch. Mater. Sci. Eng., 2008, vol. 34, no. 2, pp. 99–104.

    Google Scholar 

  123. Murshed, S.M.S., Leong, K.C., and Yang, C., Int. J. Therm. Sci., 2008, vol. 47, no. 5, pp. 560–568. https://doi.org/10.1016/j.ijthermalsci.2007.05.004

    Article  CAS  Google Scholar 

  124. Wen, D. and Ding, Y., IEEE Trans. Nanotechnol., 2006, vol. 5, no. 3, pp. 220–227. https://doi.org/10.1109/TNANO.2006.874045

    Article  Google Scholar 

  125. Wang, Y., Fisher, T.S., Davidson, J.L., and Jiang, L., Thermal conductivity of nanoparticle suspensions, Proc. 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conf., USA, 2002, AIAA 2002–3345. https://doi.org/10.2514/6.2002-3345

  126. Zhu, H., Zhang, C., Liu, S., Tang, Y., and Yin, Y., Appl. Phys. Lett., 2006, vol. 89, no. 2, ID 023123. https://doi.org/10.1063/1.2221905

    Article  CAS  Google Scholar 

  127. Eastman, J.A., Choi, S.U.S., Li, S., and Thompson, L.J., in Proc. Symp. on Nanophase and Nanocomposite Materials II, USA: Materials Research Society, 1997, vol. 457.

    Google Scholar 

  128. Li, C.H. and Peterson, G.P., J. Appl. Phys. (Melville, NY), 2006, vol. 99, no. 8, pp. 084314. https://doi.org/10.1063/1.2191571

    Article  CAS  Google Scholar 

  129. Murshed, S.M.S., Leong, K.C., and Yang, C., Int. J. Nanosci., 2006, vol. 5, no. 1, pp. 23–33. https://doi.org/10.1142/S0219581X06004127

    Article  CAS  Google Scholar 

  130. Kwak, K. and Kim, C., Korea-Aust. Rheol. J., 2005, vol. 17, no. 2, pp. 35–40.

    Google Scholar 

  131. Liu, M.S., Lin, M.C.C., Huang, I.T., and Wang, C.C., Chem. Eng. Technol., 2006, vol. 29, no. 1, pp. 72–77. https://doi.org/10.1002/ceat.200500184

    Article  CAS  Google Scholar 

  132. Wang, B.X., Zhou, L.P., and Peng, X.F., Int. J. Heat Mass Transfer, 2003, vol. 46, no. 14, pp. 2665–2672. https://doi.org/10.1016/S0017-9310(03)00016-4

    Article  CAS  Google Scholar 

  133. Kumar, D.H., Patel, H.E., Kumar, V.R.R., Sundararajan, T., Pradeep, T., and Das, S.K., Phys. Rev. Lett., 2004, vol. 93, no. 14, pp. 4301–4304. https://doi.org/10.1103/PhysRevLett.93.144301

    Article  CAS  Google Scholar 

  134. Chopkar, M., Das, P.K., and Manna, I., Scr. Mater., 2006, vol. 55, no. 6, pp. 549–552. https://doi.org/10.1016/j.scriptamat.2006.05.030

    Article  CAS  Google Scholar 

  135. Xuan, Y. and Li, Q., J. Heat Transfer, 2003, vol. 125, no. 1, pp. 151–155. https://doi.org/10.1115/1.1532008

    Article  CAS  Google Scholar 

  136. Xuan, Y., Li, Q., Zhang, X., and Fujii, M., J. Appl. Phys. (Melville, NY), 2006, vol. 100, no. 4, pp. 043507. https://doi.org/10.1063/1.2245203

    Article  CAS  Google Scholar 

  137. Kang, H.U., Kim, S.H., and Oh, J.M., Exp. Heat Transfer, 2006, vol. 19, no. 3, pp. 181–191. https://doi.org/10.1080/08916150600619281

    Article  CAS  Google Scholar 

  138. Biercuk, M.J., Llaguno, M.C., Radosavljevic, M., Hyun, J.K., Johnson, A.T., and Fischer, J.E., Appl. Phys. Lett., 2002, vol. 80, no. 15, pp. 2767–2769. https://doi.org/10.1063/1.1469696

    Article  CAS  Google Scholar 

  139. Hwang, Y.J., Ahn, Y.C., Shin, H.S., Lee, C.G., Kim, G.T., Park, H.S., and Lee, J.K., Curr. Appl. Phys., 2006, vol. 6, no. 6, pp. 1068–1071. https://doi.org/10.1016/j.cap.2005.07.021

    Article  Google Scholar 

  140. Zharov, A.V., Savinskii, N.G., Pavlov, A.A., and Evdokimov, A.N., Fundam. Issled., 2014, vol. 6, no. 8, pp. 1345–1350.

    Google Scholar 

  141. Temel, Ü.N. and Erdiş, E., BSEU J. Sci., 2019, vol. 6, pp. 123–134. https://doi.org/10.35193/bseufbd.577918

    Article  Google Scholar 

  142. Ilyin, S., Roumyantseva, T., Spiridonova, V., Semakov, A., Frenkin, E., Malkin, A., and Kulichikhin, V., Soft Matter, 2011, vol. 7, no. 19, pp. 9090–9103. https://doi.org/10.1039/C1SM06007D

    Article  CAS  Google Scholar 

  143. Ilyin, S.O. and Konstantinov, I.I., Liq. Cryst., 2016, vol. 43, no. 3, pp. 369–380. https://doi.org/10.1080/02678292.2015.1116627

    Article  CAS  Google Scholar 

  144. Wang, X.Q. and Mujumdar, A.S., Int. J. Therm. Sci., 2007, vol. 46, no. 1, pp. 1–19. https://doi.org/10.1016/j.ijthermalsci.2006.06.010

    Article  Google Scholar 

Download references

Funding

The review was financially supported by the Russian Science Foundation (project no. 19-13-00178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Ilyin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 12, pp. 1696-1715, December, 2020 https://doi.org/10.31857/S0044461820120026

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarova, V.V., Gorbacheva, S.N., Antonov, S.V. et al. On the Possibility of a Radical Increase in Thermal Conductivity by Dispersed Particles. Russ J Appl Chem 93, 1796–1814 (2020). https://doi.org/10.1134/S1070427220120022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220120022

Keywords:

Navigation