Skip to main content
Log in

Behavior of the Sewage Sludge Ash under the Conditions of High-Temperature Processing

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The sewage sludge and the chemical composition of its ash were characterized experimentally. Mineral compounds of the ash were studied by X-ray microanalysis, X-ray diffraction, and IR spectroscopy. The fusion temperatures of the sewage sludge ash were determined by the cone method. The main parameters of the slag formation (base to acid ratio, slag viscosity index, and fouling index) were calculated. The ash contains large amounts of P2O5, CaO, SiO2, and Fe2O3. Thermodynamic calculations show that large amounts of Ca3(PO4)2 and CaSiO3, significant amount of Fe2O3, and small amounts of MgSiO3, Al2O3, and SiO2 are observed in the temperature interval 600–1400°С. The sewage sludge ash tends to slagging and fouling on the reactor walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Werther, J. and Ogada, T., Prog. Energy Combust. Sci., 1999, vol. 25, no. 1, pp. 55–116. https://doi.org/10.1016/S0360-1285(98)00020-3

    Article  CAS  Google Scholar 

  2. Syed-Hassan, S.S.A., Wang, Y., Hu, S., Su, S., and Xiang, J., Renew. Sustain. Energy Rev., 2017, vol. 80, pp. 888–913. https://doi.org/10.1016/j.rser.2017.05.262

    Article  CAS  Google Scholar 

  3. Samolada, M.C. and Zabaniotou, A.A., Waste Manag., 2014, vol. 34, no. 2, pp. 411–420. https://doi.org/10.1016/j.wasman.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  4. Piasta, W. and Lukawska, M., Procedia Eng., 2016, vol. 161, pp. 1018–1024. https://doi.org/10.1016/j.proeng.2016.08.842

    Article  CAS  Google Scholar 

  5. Atienza-Martínez, M., Fonts, I., Ábrego, J., Ceamanos, J., and Gea, G., Chem. Eng. J., 2013, vol. 222, pp. 534–545. https://doi.org/10.1016/j.cej.2013.02.075

    Article  CAS  Google Scholar 

  6. Fytili, D. and Zabaniotou, A., Renew. Sust. Energy Rev., 2008, vol. 12, no. 1, pp. 116–140. https://doi.org/10.1016/j.rser.2006.05.014

    Article  CAS  Google Scholar 

  7. Wzorek, M., Fuel Process. Technol., 2012, vol. 104, pp. 80–89. https://doi.org/10.1016/j.fuproc.2012.04.023

    Article  CAS  Google Scholar 

  8. Jayaraman, K. and Gökalp, I., Energy Convers. Manag., 2015, vol. 89, pp. 83–91. https://doi.org/10.1016/j.enconman.2014.09.058

    Article  CAS  Google Scholar 

  9. Suárez-Ruiz, I., Diez, M.A., and Rubiera, F., New Trends in Coal Conversion: Combustion, Gasification, Emissions, and Coking, Elsevier, 2019, pp. 1–30. https://doi.org/10.1016/C2016-0-04039-1

    Article  Google Scholar 

  10. Toledo, M., Ripoll, N., Céspedes, J., Zbogar-Rasic, A., Fedorova, N., Jovicic, V., and Delgado, A., Energy Convers. Manag., 2018, vol. 172, pp. 381–390. https://doi.org/10.1016/j.enconman.2018.07.046

    Article  CAS  Google Scholar 

  11. Zaichenko, A.Yu., Zhirnov, A.A., Manelis, G.B., Polianchik, E.V., and Zholudev, A.F., Theor. Found. Chem. Eng., 2010, vol. 44, no. 1, pp. 30–35. https://doi.org/10.1134/S0040579510010045

    Article  CAS  Google Scholar 

  12. Miroshnichenko, T.P., Lutsenko, N.A., and Levin, V.A., J. Appl. Mech. Tech. Phys., 2015, vol. 56, no. 5, pp. 864–869. https://doi.org/10.1134/S0021894415050132

    Article  Google Scholar 

  13. Dmitrienko, M.A., Nyashina, G.S., and Strizhak, P.A., J. Clean. Prod., 2018, vol. 177, pp. 284–301. https://doi.org/10.1016/j.jclepro.2017.12.254

    Article  CAS  Google Scholar 

  14. Kislov, V.M., Glazov, S.V., Salgansky, E.A., Kolesnikova, Yu.Yu., and Salganskaya, M.V., Combust. Explos. Shock Waves, 2016, vol. 52, no. 3, pp. 320–325. https://doi.org/10.1134/S0010508216030102

    Article  Google Scholar 

  15. Toledo, M., Rosales, C., Silvestre, C., and Caro, S., Int. J. Hydrogen Energy, 2016, vol. 41, no. 46, pp. 21131–21139. https://doi.org/10.1016/j.ijhydene.2016.09.120

    Article  CAS  Google Scholar 

  16. Zaichenko, A.Y., Podlesniy, D.N., Tsvetkov, M.V., Salganskaya, M.V., and Chub, A.V., Russ. J. Appl. Chem., 2019, vol. 92, no. 2, pp. 276–281. https://doi.org/10.1134/S1070427219020162

    Article  CAS  Google Scholar 

  17. Tsvetkov, M.V., Zyukin, I.V., Freiman, V.M., Salganskaya, M.V., and Tsvetkova, Y.Y., Russ. J. Appl. Chem., 2017, vol. 90, no. 10, pp. 1706–1711. https://doi.org/10.1134/S1070427217100226

    Article  CAS  Google Scholar 

  18. Trusov, B.G., III Mezhdunarodnyi simpozium “Gorenie i plazmokhimiya” (III Int. Symp. “Combustion and Plasma Chemistry”), Almaty: Kaz. Nats. Univ., 2005, pp. 24–26.

  19. Magdziarz, A., Wilk, M., Gajek, M., Nowak-Woźny, D., Kopia, A., Kalemba-Rec, I., and Koziński, J.A., Energy, 2016, vol. 113, pp. 85–94. https://doi.org/10.1016/j.energy.2016.07.029

    Article  CAS  Google Scholar 

  20. Niu, Y., Tan, H., and Hui, S., Prog. Energy Combust. Sci., 2016, vol. 52, pp. 1–61. https://doi.org/10.1016/j.pecs.2015.09.003

    Article  Google Scholar 

  21. Saikia, B.J. and Parthasarathy, G., J. Modern Phys., 2010, vol. 1, no. 4, pp. 206–210. https://doi.org/10.4236/jmp.2010.14031

    Article  CAS  Google Scholar 

  22. Burgina, E.B., Kustova, G.N., Tsybulya, S.V., Kryukova, G.N., Litvak, G.S., Isupova, L.A., and Sadykov, V.A., J. Struct. Chem., 2000, vol. 41, no. 3, pp. 396–402. https://doi.org/10.1007/BF02741997

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research (research project no. 19-08-00244) and by government assignment no. 0089-2019-0018 (state registry no. АААА-А19-119-022690098-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Tsvetkov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsvetkov, M.V., Podlesniy, D.N., Freyman, V.M. et al. Behavior of the Sewage Sludge Ash under the Conditions of High-Temperature Processing. Russ J Appl Chem 93, 881–887 (2020). https://doi.org/10.1134/S1070427220060154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220060154

Keywords:

Navigation