Skip to main content
Log in

Flocculation of Titanium Dioxide with Functionalized Citrus Pectin

  • Physicochemical Studies of Systems and Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Modified polysaccharides were prepared by the reaction of citrus pectin with a cationic monomer, (1,2-epoxypropyl)triethylammonium chloride, in alkaline medium and under the action of microwave radiation in the reactor system microwave–ultrasonic–UV-induced synthesis. Organic hybrids were prepared by mixing aqueous solutions of natural polysaccharides (pectin and modified pectin with chitosan) under ambient conditions in 1 : 1 ratio. The influence of the concentration of citrus pectin, its modified samples, chitosan, and their organic hybrids on the flocculating properties was studied for a model disperse system, a suspension of titanium dioxide in water and aqueous salt solutions, under the conditions of free (unrestricted) sedimentation. The influence of the ionic strength on the conformational state of polysaccharide macromolecules and on the aggregation of titanium dioxide particles was analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Zhang, J., Sun, W., Gao, Z., Niu, F., Wang, L., Zhao, Y., and Gao, Y., Minerals, 2018, vol. 8, no. 6, pp. 227–238. https://doi.org/10.3390/min8060227

    Article  CAS  Google Scholar 

  2. Abiola, O.N., Polymeric Materials for Clean Water, Das, R., Ed., Springer, 2019, pp. 77–92. https://doi.org/10.1007/978-3-030-00743-0_4

    Article  Google Scholar 

  3. Chen, L., Liu, C., Sun, Y., Sun, W., Xu, Y., and Zheng, H., Processes, 2018, vol. 6, no. 5, pp. 54–68. https://doi.org/10.3390/pr6050054

    Article  CAS  Google Scholar 

  4. Salehizadeh, H., Yan, N., and Farnood, R., Biotechnol. Adv., 2018, vol. 36, no. 1, pp. 92–119. https://doi.org/10.1016/j.biotechadv.2017.10.002

    Article  CAS  PubMed  Google Scholar 

  5. Liu, Z., Wei, H., Li, A., and Yang, H., Water Res., 2017, vol. 118, pp. 160–166. https://doi.org/10.1016/j.watres.2017.04.032

    Article  CAS  PubMed  Google Scholar 

  6. Azmeera, V., Tungala, K., Adhikary, P., Kumar, K., and Krishnamoorthi, S., Int. J. Biol. Macromol., 2017, vol. 104, pp. 1204–1211. https://doi.org/10.1016/j.ijbiomac.2017.06.111

    Article  CAS  PubMed  Google Scholar 

  7. Pal, P., Pandey, J.P., and Sen, G., Polymer, 2017, vol. 112, pp. 159–168. https://doi.org/10.1016/j.polymer.2017.01.059

    Article  CAS  Google Scholar 

  8. Bal, T. and Swain, S., DARU J. Pharm. Sci., 2019, pp. 1–12. https://doi.org/10.1007/s40199-019-00237-8

    Article  Google Scholar 

  9. Nichifor, M. and Zhu, X., Colloid Polym. Sci., 2003, vol. 281, pp. 1034–1039. https://doi.org/10.1007/s00396-003-0872-7

    Article  CAS  Google Scholar 

  10. Kumar, D., Pandey, J., Raj, V., and Kumar, P., Open Med. Chem. J., 2017, vol. 11, no. 1, pp. 109–126. https://doi.org/10.2174/1874104501711010109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ahmad, N.H., Mustafa, S., and Man, Y.B.C., Int. J. Food Properties, 2015, vol. 18, pp. 332–347. https://doi.org/10.1080/10942912.2012.693561

    Article  CAS  Google Scholar 

  12. Tungala, K., Adhikary, P., Azmeera, V., Kumar, K., and Krishnamoorthi, S., New J. Chem., 2017, vol. 41, pp. 611–618. https://doi.org/10.1039/C6NJ02599D

    Article  CAS  Google Scholar 

  13. Ren, K., Du, H., Yang, Z., Tian, Z., Zhang, X., Yang, W., and Chen, J., ACS Appl. Mater. Interfaces, 2017, vol. 9, pp. 10266–10275. https://doi.org/10.1021/acsami.7b00828

    Article  CAS  PubMed  Google Scholar 

  14. Lu, X., Xu, Y., Sun, W., Sun, Y., and Zheng, H., Sci. Total Environ., 2017, vol. 609, pp. 410–418. https://doi.org/10.1016/j.scitotenv.2017.07.192

    Article  CAS  PubMed  Google Scholar 

  15. Peng, S., Jiang, G., Li, X., Yang, L., Liu, F., and He, Y., J. Petrol. Sci. Eng., 2018, vol. 162, pp. 55–62. https://doi.org/10.1016/j.petrol.2017.12.036

    Article  CAS  Google Scholar 

  16. Proskurina, V.E., Shabrova, E.S., Rakhmatullina, A.P., and Galyametdinov, Yu.G., Russ. J. Appl. Chem., 2017, vol. 90, no. 10, pp. 1659–1665. https://doi.org/10.1134/S1070427217100202

    Article  Google Scholar 

  17. Proskurina, V.E. and Galyametdinov, Yu.G., Sovremennye problemy teorii i praktiki protsessov flokulyatsii s uchastiem polimer-neorganicheskikh gibridov: Monografiya (Modern Problems of the Theory and Practice of Flocculation Processes Involving Polymer-Inorganic Hybrids: Monograph), Kazan: Kazansk. Nauchno-Issled. Tekhnol. Inst., 2015.

    Google Scholar 

  18. Tarasevich, B.N., IK-spektry osnovnykh klassov organicheskikh soedinenii. Spravochnye materialy (IR Spectra of the Main Classes of Organic Compounds. Reference Materials), Moscow: Mosk. Gos. Univ., 2012.

    Google Scholar 

  19. Silverstein, R.M., Webster, F.X., and Kiemle, D.J., Spectrometric Identification of Organic Compounds, New York: Wiley, 2005.

    Google Scholar 

  20. Mishra, R.K., Sutar, P.B., Singhal, J.P., and Banthia, A.K., Polym.-Plast. Technol. Eng., 2007, vol. 46, no. 11, pp. 1079–1085. https://doi.org/10.1080/03602550701525164

    Article  CAS  Google Scholar 

  21. Işıklan, N. and Tokmak, Ş., Int. J. Biol. Macromol., 2018, vol. 113, pp. 669–680. https://doi.org/10.1016/j.ijbiomac.2018.02.155

    Article  CAS  PubMed  Google Scholar 

  22. Chauhan, K., Kumar, R., Kumar, M., Sharma, P., and Chauhan, G.S., Desalination, 2012, vol. 305, pp. 31–37. https://doi.org/10.1016/j.desal.2012.07.042

    Article  CAS  Google Scholar 

  23. Singh, R.P., Pal, S., Rana, V.K., and Ghorai, S., Carbohydrate Polym., 2013, vol. 91, pp. 294–299. https://doi.org/10.1016/j.carbpol.2012.08.024

    Article  CAS  Google Scholar 

  24. Mohd-Salleh, S.N.A., Mohd-Zin, N.S., and Othman, N., Sains Malaysiana, 2019, vol. 48, pp. 155–164. https://doi.org/10.17576/jsm-2019-4801-18

    Article  CAS  Google Scholar 

  25. Vajihinejad, V. and Soares, J.B., Chem. Eng. J., 2018, vol. 346, pp. 447–457. https://doi.org/10.1016/j.cej.2018.04.039

    Article  CAS  Google Scholar 

  26. Everaers, R., Grosberg, A.Y., Rubinstein, M., and Rosa, A., Soft Matter, 2017, vol. 13, pp. 1223–1234. https://doi.org/10.1039/C6SM02756C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Proskurina.

Ethics declarations

FUNDING

The study was financially supported by the Russian Foundation for Basic Research (project no. 18-03-00099).

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proskurina, V.E., Shilova, S.V., Kashina, E.S. et al. Flocculation of Titanium Dioxide with Functionalized Citrus Pectin. Russ J Appl Chem 93, 225–231 (2020). https://doi.org/10.1134/S107042722002010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722002010X

Keywords

Navigation