Skip to main content
Log in

Catalysts Pt/(Ga)Al2O3 Obtained Using Aluminum Metal Activated with Gallium

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The products of the interaction of activated aluminum with water were used as a precursor of an oxide support of catalysts. The possibility of changing the composition of the oxide phase by varying the nature of the activator (gallium and Ga—In eutectic alloy) is shown. It was found that during the synthesis, gallium cations enter the structure of aluminum oxide by displacing aluminum from the tetrahedral position. The effect of gallium content in the composition of the support on its textural and acid-base properties is demonstrated. The presence of gallium in the composition of the catalyst leads to a modification of the catalytic properties of platinum, which consists in suppressing the hydrogenolysis of C—C bonds in the reaction of propane conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, M., Xu, J., Su, F.-Z., Liu, Y.-M., Cao, Y., He, He-Y., and Fan, K.-N., J. Catal., 2008, vol. 256, pp. 293–300. https://doi.org/10.1016/j.jcat.2008.03.021

    Article  CAS  Google Scholar 

  2. Saito, M., Watanabe, S., Takahara, I., Inaba, M., and Murata, K., Catal. Lett., 2003, vol. 89, pp. 213–217. https://doi.org/10.1023/A:1025754413131

    Article  CAS  Google Scholar 

  3. Michorczyk, P., Gora-Marek, K., and Ogonowski, J., Catal. Lett., 2006, vol. 109, pp. 195–198. https://doi.org/10.1007/s10562-006-0077-z

    Article  CAS  Google Scholar 

  4. Nakagawa, K., Kajita, C., Okumura, K., Ikenaga, N.-O., Nishitani-Gamo, M., Ando, T., Kobayashi, T., and Suzuki, T., J. Catal., 2001, vol. 203, pp. 87–93. https://doi.org/10.1006/jcat.2001.3306

    Article  CAS  Google Scholar 

  5. Haneda, M., Kintaichi, Y., and Hamada, H., Appl. Catal. B, 2001, vol. 31, pp. 251–261. https://doi.org/10.1016/S0926-3373(00)00286-1

    Article  CAS  Google Scholar 

  6. Takahashi, M., Nakatani, T., Iwamoto, S., and Watanabe, T., Appl. Catal. B, 2007, vol. 70, pp. 73–79. https://doi.org/10.1016/j.apcatb.2006.01.018

    Article  CAS  Google Scholar 

  7. Shimizu, K., Takamatsu, M., Nishi, K., Yoshida, H., Satsuma, A., Tanaka, T., Yoshida, S., and Hattori, T., J. Phys. Chem. B, 1999, vol. 103, pp. 1542–1549. https://doi.org/10.1021/jp983790w

    Article  CAS  Google Scholar 

  8. Xu, B.J., Zheng, B., Hua, W.M., Yue, Y.H., and Gao, Z., J. Catal., 2006, vol. 239, pp. 470–477. https://doi.org/10.1016/j.jcat.2006.02.017

    Article  CAS  Google Scholar 

  9. Domínguez, F., Sánchez, J., Arteaga, G., and Choren, E., J. Mol. Catal. A: Chemical, 2005, vol. 228, pp. 319–324. https://doi.org/10.1016/j.molcata.2004.09.031

    Article  Google Scholar 

  10. Iwasa, N., Mayanagi, T., Ogawa, N., Sakata, K., and Takezawa, N., Catal. Lett., 1998, vol. 54, pp. 119–123. https://doi.org/10.1023/A:1019056728333

    Article  CAS  Google Scholar 

  11. Ryndin Yu.A., Gobo1os, S., Zaikovskii, V.I., Margitfalvi, J., and Yermakov Yu. I., React. Kinet. Catal. Lett., 1982, vol. 21, no. 1–2, pp. 91–95. https://doi.org/10.1007/BF02064779

    Article  CAS  Google Scholar 

  12. Belskaya, O.B., Stepanova, L.N., Gulyaeva, T.I., Leont’eva, N.N., Likholobov, V.A., Zaikovskii, V.I., and Salanov, A.N., Kinet. Catal., 2016, vol. 57, no. 4, pp. 4–546. https://doi.org/10.7868/S0453881116040031

    Article  Google Scholar 

  13. Masuda, T., Watanabe, T., Miyahara, Y., Kanai, H., and Inoue, M., Top. Catal., 2009, vol. 52, pp. 699. https://doi.org/10.1007/s11244-009-9211-7

    Article  CAS  Google Scholar 

  14. Watanabe, T., Miki, Y., Masuda, T., Kanai, H., Hosokawa, S., Wada, K., and Inoue, M., Micropor. Mesopor. Mater., 2011, vol. 145, pp. 131–140. https://doi.org/10.1016/j.micromeso.2011.05.002

    Article  CAS  Google Scholar 

  15. Takahashi, M., Inoue, N., Nakatani, T., Takeguchi, T., Iwamoto, S., Watanabe, T., and Inoue, M., Appl. Catal. B, 2006, vol. 65, pp. 142–149. https://doi.org/10.1016/j.apcatb.2006.01.007

    Article  CAS  Google Scholar 

  16. Maunula, T., Kintaichi, Y., and Inaba, M., Appl. Catal. B, 1998, vol. 15, pp. 291–304. https://doi.org/10.1016/S0926-3373(97)00056-8

    Article  CAS  Google Scholar 

  17. Haneda, M., Kintaichi, Y., Mizushima, T. Kakuta, N., and Hamada, H., Appl. Catal. B, 2001, vol. 31, pp. 81–92. https://doi.org/10.1016/S0926-3373(00)00271-X

    Article  CAS  Google Scholar 

  18. Haneda, M., Kintaichi, Y., and Hamada, H., Appl. Catal. B, 2001, vol. 31, pp. 251–261. https://doi.org/10.1016/S0926-3373(00)00286-1

    Article  CAS  Google Scholar 

  19. Afonasenko, T.N., Leont’eva, N.N., Talzi, V.P., Savel’eva, G.G., Shilova, A.V., Tsyrul’nikov, P.G., and Smirnovav, N.S., Russ. J. Phys. Chem. A, 2017, vol. 91, no. 10, pp. 10–1939. https://doi.org/10.1134/S003602441710003X

    Article  Google Scholar 

  20. Trenikhin, M.V., Bubnov, A.V., Kozlov, A.G., Nizovskii, A.I., Duplyakin, V.K., Russ. J. Phys. Chem. A, 2006, vol. 80, no. 7, pp. 7–1110 https://doi.org/10.1134/S0036024406070193

    Article  Google Scholar 

  21. Trenikhin, M.V., Bubnov, A.V., Nizovskii, A.I., and Duplyakin V.K., Inorg. Mater., vol. 42, no. 3, pp. 256–260. https://doi.org/10.1134/S0020168506030083

    Article  CAS  Google Scholar 

  22. Nizovskii, A.I., Kulikov, A.V., and Trenikhin, M.V., Catal. Sustain. Energy, 2017, vol. 4, pp. 62–66. https://doi.org/10.1515/cse-2017-0010

    CAS  Google Scholar 

  23. Sheindlin, A.E. and Zhuk, A.Z., Russ. J. Gen. Chem., 2007, vol. 77, no. 4, pp. 4–778. https://doi.org/10.1134/S107036320704038X

    Article  Google Scholar 

  24. Sheindlin, A.E. and Zhuk, A.Z., Alumino-Hydrogen Energy: Principles and Technologies, Herald of the Russian Academy of Sciences, 2010, vol. 80, no. 2. pp. 143–148.

    Google Scholar 

  25. Belskaya, O.B., Nizovskii, A.I., Gulyaeva, T.I., and Bukhtiyarov, V.I., Russ. J. Appl. Chem., 2018, vol. 91, no. 11, pp. 11–1814. https://doi.org/10.1134/s1070427218110113

    Article  Google Scholar 

  26. Arean, C.O., Delgado, M.R., Montouillout, V., and Massiot, D., Z. Anorg. Allgem. Chem., 2005, vol. 631, pp. 2121–2126. https://doi.org/10.1002/zaac.200570027

    Article  CAS  Google Scholar 

  27. Kwak, J.H., Hu, J.Z., Kim, D.H. Szanyi, J., and Peden, C.H.F., J. Catal., 2007, vol. 251, pp. 189–194. https://doi.org/10.1016/jjcat.2007.06.029

    Article  CAS  Google Scholar 

  28. Paglia, G., Buckley, C.E., Rohl, A.L., Hart, R.D., Winter, K., Studer, A.J., Hunter, B.A., and Hanna, J.V., Chem. Mater., 2004, vol. 16, no. 2, pp. 2–220. https://doi.org/10.1021/cm034917j

    Article  Google Scholar 

  29. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Pure Appl. Chem., 2015, vol. 87, no. 9–10, pp. 1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  30. Hakim, S.H. and Shanks, B.H., Micropor. Mesopor. Mater., 2010, vol. 135, pp. 105–115. https://doi.org/10.1016/j.micromeso.2010.06.017

    Article  CAS  Google Scholar 

  31. Vimont, A., Lavalley, J.C., Sahibed-Dine, A., Arean, C.O., Delgado, M.R., and Daturi, M., J. Phys. Chem. B, 2005, vol. 109, pp. 9656–9664. https://doi.org/10.1021/jp050103+

    Article  CAS  Google Scholar 

  32. Gonzalez, E.A., Jasen, P.V., Juan, A., Collins, S.E., Baltanas, M.A., and Bonivardi, A.L., Surf. Sci., 2005, vol. 575, pp. 171–180. https://doi.org/10.1016/j.susc.2004.11.018

    Article  CAS  Google Scholar 

  33. Todorova, S. and Su B.-L., Catal. Today, 2004, vol. 93–95, pp. 417–424. https://doi.org/10.1016/j.cattod.2004.06.051

    Article  Google Scholar 

  34. Sun, P., Siddiqi, G., Chi, M., and Bell, A.T., J. Catal., 2010, vol. 274, pp. 192–199. https://doi.org/10.1016/j.jcat.2010.06.017

    Article  CAS  Google Scholar 

  35. Redekop, E., Galvita, V., Poelman, H., Bliznuk, V., Detavernier, C., and Marin, G., ACS Catal., 2014, vol. 4(6), pp. 1812–1824. https://doi.org/10.1021/cs500415e

    Article  CAS  Google Scholar 

  36. Bednarova, L., Lyman, C.E., Rytter, E., Holmen, A., J. Catal., 2002, vol. 211, pp. 335–346. https://doi.org/10.1006/jcat.2002.3699

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to L.N. Stepanova, V.P. Talzy, O.V Mayevskaya, I.V. Muromtsev, A.V. Shilova, and R.R. Izmailov for their participation in the study of the samples.

Funding

This work was carried out as part of the state assignment of the Institute of Catalysis of the SB RAS, project no. AAAA-A17-117041110045-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Belskaya.

Ethics declarations

The other authors declare that they have no conflict of interest.

Additional information

Russian Text © The Author(s), 2020, published in Zhurnal Prikladnoi Khimii, 2020, Vol. 93, No. 1, pp. 132–141.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belskaya, O.B., Nizovskii, A.I., Gulyaeva, T.I. et al. Catalysts Pt/(Ga)Al2O3 Obtained Using Aluminum Metal Activated with Gallium. Russ J Appl Chem 93, 118–126 (2020). https://doi.org/10.1134/S1070427220010139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220010139

Keywords

Navigation