Skip to main content
Log in

Optimization of the Pyrolysis of Naphtha Fractions of the West Siberian Gas Condensate to Obtain Lower Olefins and Divinyl

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Naphtha fractions of the West Siberian gas condensate were evaluated as feedstock for thermal pyrolysis performed in the temperature interval 750–900°C at the conventional contact time of 0.2–0.4 s and steam-to-feed weight ratio of (0.5; 0.8): 1.0. Statistical models of the process, based on the experimental dataset obtained, were constructed and used for multicriteria optimization with respect to the key products: ethylene, propylene, divinyl, pyrogas, and coke. The optimum process parameters for pyrolysis of light and heavy naphtha of the gas condensate to reach the maximal yield of target products (ethylene, propylene, divinyl) under the conditions of compromise solutions were found. The influence of the group and individual hydrocarbon composition of the naphtha fractions of the gas condensate on the yield and distribution of the major products was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levin V.O., Potekhin V.M., and Kudimova M.V., Neftepererab. Neftekhim., 2017, no. 6, pp. 28–36.

    Google Scholar 

  2. Eder L.V., Filimonova I.V., Mishenin M.V., and Lapkovskii V.V., Ekol. Vestn. Ross., 2017, no. 8, pp. 10–17.

    Google Scholar 

  3. Belogor’ev A.M., Perspektivy rossiiskoi neftedobychi (Prospects for Oil Extraction in Russia), Inst. of Power Engineering and Finances, 2015. http://www.imemo.ru/files/File/ru/conf/2015/10112015/20151110_PRZ_BEL.pdf (addressed Jan. 20, 2019).

    Google Scholar 

  4. Shevkunov S.N., Vesti Gaz. Nauki, 2018, no. 1 (33), pp. 207–215.

    Google Scholar 

  5. Morozov A.Yu. and Karatun O.N., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol, 2009, vol. 52, no. 11, pp. 141–143.

    CAS  Google Scholar 

  6. Karatun O.N. and Morozov A.Yu., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol, 2009, vol. 52, no. 7, pp. 113–115.

    CAS  Google Scholar 

  7. Morozov A.Yu. and Karatun O.N., Zashch. Okruzh. Sredy, 2012, no. 8, pp. 49–51.

    Google Scholar 

  8. Mukhina T.N., Barabanov N.L., and Babash S.E., Piroliz uglevodorodnogo syr’ya (Pyrolysis of Hydrocarbon Feedstock), Moscow: Khimiya, 1987, pp. 72–87.

    Google Scholar 

  9. Chernyi I.R., Proizvodstvo syr’ya dlya neftekhimicheskikh sintezov (Production of Feedstock for Petrochemical Syntheses), Moscow: Khimiya, 1983, pp. 26–27.

    Google Scholar 

  10. Sedighi M. Keyvanloo K., and Towfighi D.J., Iran. J. Chem. Chem. Eng., 2010, vol. 29, no. 4, pp. 135–147.

    CAS  Google Scholar 

  11. Keyvanloo K., Towfighi J., Sadrameli S.M., and Mohamadalizadeh A., J. Anal. Appl. Pyrol., 2010, vol. 87, pp. 224–230. https://doi.org/10.1016/j.jaap.2009.12.007

    Article  CAS  Google Scholar 

  12. Abghari S.Z. and Sadi M., J. Taiwan Inst. Chem. Eng., 2013, vol. 44, no. 3, pp. 365–376. https://doi.org/10.1016/j.jtice.2012.11.020

    Article  CAS  Google Scholar 

  13. Shuo S., Wei T., Lili L., and Jinsheng, S., J. Anal. Appl. Pyrol., 2015, vol. 112, pp. 150–163. https://doi.org/10.1016/j.jaap.2015.02.003

    Article  Google Scholar 

  14. Brandon D.B., Instrum. Soc. Am. J., 1959, vol. 6, no. 7, pp. 70–73.

    Google Scholar 

  15. Kholodnov V.A. and Lebedeva M.Yu., Izv. Sankt-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2018, no. 43 (69), pp. 91–94.

    Google Scholar 

  16. Ehrgott M., Multicriteria Optimization, Berlin: Springer, 2005, 2nd ed., pp. 1–20.

    Google Scholar 

  17. Yampol’skii, Yu.P., Elementarnye reaktsii i mekhanizm piroliza uglevodorodov (Elementary Reactions and Mechanism of Hydrocarbon Pyrolysis), Moscow: Khimiya, 1990, pp. 103–182.

    Google Scholar 

  18. Yasunaga K., Yamad H., Oshita H., Hattori K., Hidaka Y., and Curran H., Combust. Flame, 2017, vol. 185, pp. 335–345. http://dx.doi.org/10.1016/j.combustfl ame.2017.07.027

    Article  CAS  Google Scholar 

  19. Ji-chang L., Ben-xian S., Da-qi W., and Ji-hong D., J. Petrol. Sci. Eng., 2009, vol. 66, nos. 3–4, pp. 156–160. https://doi.org/10.1016/j.petrol.2009.02.009

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to OOO Novatek-Ust-Luga for assisting in the study and placing samples of stable gas condensate from the West Siberian field at our disposal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Levin.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 11, pp. 1441–1453.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, V.O., Potekhin, V.V., Potekhin, V.M. et al. Optimization of the Pyrolysis of Naphtha Fractions of the West Siberian Gas Condensate to Obtain Lower Olefins and Divinyl. Russ J Appl Chem 92, 1537–1548 (2019). https://doi.org/10.1134/S1070427219110119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219110119

Keywords

Navigation