Skip to main content
Log in

Optimization of Catalytic Cocracking of Vacuum Distillate and Bio-Oxygenates in the Presence of Zeolite ZSM-5 Using Two-Factor Regression Analysis

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The features of the catalytic conversion of acetone and glycerol in a mixture with a hydrotreated vacuum distillate in the presence of zeolite catalysts containing Y and ZSM-5 have been studied. It has been shown that in the presence of zeolite Y, the highest yield of total C2–C4 olefins (24.1%) is achieved in the case of the conversion of the petroleum feedstock with an acetone-rich additive. The introduction of a catalytic additive based on ZSM-5 can significantly increase the yield of light olefins in the cracking of glycerol-rich feedstock. A synergistic effect in the transformation of a mixture of acetone and glycerol under these conditions has been observed, which is manifested in a decrease in the yield of C2–C4 olefins and an increase in the yield of gasoline fraction components. A significant influence of oxygenated feedstock additives on the intensity of hydrogen transfer reactions catalyzed by a combination of zeolites Y and ZSM-5 has been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. Razaviarani and I. D. Buchanan, Bioresource Technol. 182, 8 (2015).

    Article  CAS  Google Scholar 

  2. A. Demirbas, Biodiesel: A Realistic Fuel Alternative for Diesel Engines (Springer, New York, 2008).

    Google Scholar 

  3. C. O’Driscoll, Biofuels Bioprod. Biorefin. 1, 6 (2007).

    Article  Google Scholar 

  4. Z. Qi, C. Jie, W. Tiejun, and X. Ying, Energy Convers. Manage. 48, 87 (2007).

    Article  CAS  Google Scholar 

  5. T. A. Palankoev, K. I. Dementiev, and S. N. Khadzhiev, Pet. Chem. 59, 438 (2019).

    Article  CAS  Google Scholar 

  6. K. Pathak, K. M. Reddy, N. N. Bakhshi, and A. K. Dalai, Appl. Catal., A 372, 224 (2010).

  7. A. Corma, G. W. Huber, L. Sauvanaud, and P. O’Connor, J. Catal. 257, 163 (2008),

    Article  CAS  Google Scholar 

  8. Z. Y. Zakaria, J. Linnekoski, and N. S. Amin, Chem. Eng. J. 207–208, 803 (2012).

    Article  CAS  Google Scholar 

  9. N. Viswanadham and S. Saxena, Fuel 105, 490 (2013).

    Article  CAS  Google Scholar 

  10. T. Tago, H. Konno, S. Ikeda, et al., Catal. Today 164, 158 (2011).

    Article  CAS  Google Scholar 

  11. S. D. Blass, R. J. Hermann, E. P. Nils, et al., Appl. Catal., A 475, 10 (2014).

  12. A. Corma, G. Huber, L. Sauvanaud, and P. O’Connor, J. Catal. 247, 307 (2007).

    Article  CAS  Google Scholar 

  13. M. Bertero, G. Puente, and U. Sedran, Renew. Energy 60, 349 (2013).

    Article  CAS  Google Scholar 

  14. I. Graca, F. Ribeiro, H. S. Cerqueira, et al., Appl. Catal., B 90, 556 (2009).

    Article  CAS  Google Scholar 

  15. S. N. Khadzhiev, I. M. Gerzeliev, and K. I. Dement’ev, Pet. Chem. 54, 1 (2014).

    Article  CAS  Google Scholar 

  16. D. Degnan, G. Chitnis, and P. Schipper, Microporous Mesoporous Mater. 35–36, 245 (2000).

    Article  Google Scholar 

  17. D. Wallensteln, R. H. Harding, J. Witzler, and X. Zhao, Appl. Catal., A 167, 141 (1998).

  18. I. M. Gerzeliev, K. I. Dement’ev, A. Yu. Popov, et al., in Proceedings of IX School–Conference of Young Scientists on Petroleum Chemistry (Zvenigorod, 2008).

  19. A. Errekatxo, A. Ibarra, A. Gutierrezet al., Chem. Eng. J. 307, 955 (2017).

    Article  CAS  Google Scholar 

  20. J. Kowalska-Kus, A. Held, M. Frankowski, and K. Nowinska, J. Mol. Catal. A 426, 205 (2017).

    Article  CAS  Google Scholar 

  21. Y. G. Adewuyi, Appl. Catal., A 163, 15 (1997).

Download references

Funding

The work was performed in the framework of the State task of the Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Palankoev.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palankoev, T.A., Dementiev, K.I. & Khadzhiev, S.N. Optimization of Catalytic Cocracking of Vacuum Distillate and Bio-Oxygenates in the Presence of Zeolite ZSM-5 Using Two-Factor Regression Analysis. Pet. Chem. 59, 675–681 (2019). https://doi.org/10.1134/S0965544119070119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544119070119

Keywords:

Navigation