Skip to main content
Log in

Ceramic and Transport Characteristics of Electrolytes Based on Mg-Doped LaYO3

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Effect of magnesium on the sinterability, phase composition, microstructure, and transport properties of proton-conducting materials of composition LaY1–xMgxO3–δ (х = 0, 0.05, 0.1) was studied. Ceramic samples were obtained by using the citrate-nitrate synthesis method at various sintering temperatures (1250–1400°C). It was shown that, for the samples with x = 0.05 and 0.1, the relative density was no less than 95% at a sintering temperature of 1350°C, whereas undoped lanthanum nitrate has this density at 1450°C. An X-ray diffraction analysis and scanning electron microscopy demonstrated that introduction of a small amount of magnesium (x = 0.05) is sufficient for forming the single-phase and high-dense ceramics. Electrical conductivity data show that the LaY0.95Mg0.05O3–δ sample has high overall and ionic conductivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Badwal, S.P.S., Giddey, S., Munnings, C., and Kulkarni, A., J. Aust. Ceram. Soc., 2014, vol. 50, pp. 23–37.

    CAS  Google Scholar 

  2. Ni, M., Leung, M.K.H., and Leung, D.Y.C., Int. J. Hydrogen Energy, 2008, vol. 33, pp. 2337–2354.

    Article  CAS  Google Scholar 

  3. Volkov, A., Gorbova, E., Vylkov, A., et al., Sens. Actua tors, B, 2017, vol. 244, pp. 1004–1015.

    Article  CAS  Google Scholar 

  4. Vourros, A., Kyriakou, V., Garagounis, I., et al., Solid State Ionics, 2017, vol. 306, pp. 76–81.

    Article  CAS  Google Scholar 

  5. Morejudo, S.H., Zanun, R., Escolbstico, S., et al., Science, 2016, vol. 353, pp. 563–566.

    Article  CAS  PubMed  Google Scholar 

  6. Wachsman, E.D. and Lee, K.T., Science, 2011, vol. 334, no. 6058, pp. 935–939.

    Article  CAS  PubMed  Google Scholar 

  7. Medvedev, D.A., Lyagaeva, J.G., Gorbova, E.V., et al., Prog. Mater. Sci., 2016, vol. 75, pp. 38–79.

    Article  CAS  Google Scholar 

  8. Faro, M.L., La Rosa, D., Antonucci, V., and Arico, A.S., J. Indian Inst. Sci., 2012, vol. 89, no. 4, pp. 363–380.

    Google Scholar 

  9. Huse, M., Norby, T., and Haugsrud, R., Int. J. Hydrogen Energy, 2012, vol. 37, no. 9, pp. 8004–8016.

    Article  CAS  Google Scholar 

  10. Nguyen, D., Kim, Y.H., Lee, J.S., and Fisher, J.G., Mater. Chem. Phys., 2017, vol. 202, pp. 320–328.

    Article  CAS  Google Scholar 

  11. Harley, G., Yu, R., and De Jonghe, L.C., Solid State Ionics, 2007, vol. 178, nos. 11–12, pp. 769–773.

    Article  CAS  Google Scholar 

  12. Amsif, M., Magrasó, A., Marrero-López, D., et al., Chem. Mater., 2012, vol. 24, no. 20, pp. 3868–3877.

    Article  CAS  Google Scholar 

  13. Feteira, A., Gillie, L.J., Elsebrock, R., and Sinclair, D.C., J. Am. Ceram. Soc., 2007, vol. 90, no. 5, pp. 1475–1482.

    Article  CAS  Google Scholar 

  14. Kochetova, N., Animitsa, I., Medvedev, D., et al., RSC Adv., 2016, vol. 6, no. 77, pp. 73222–73268.

    Article  CAS  Google Scholar 

  15. Stroeva, A.Y., Gorelov, V.P., Kuz'min, A.V., et al., Phys. Solid State, 2015, vol. 57, no. 7, pp. 1334–1341.

    Article  CAS  Google Scholar 

  16. Danilov, N., Vdovin, G., Reznitskikh, O., et al., J. Eur. Ceram. Soc., 2016, vol. 36, no. 11, pp. 2795–2800.

    Article  CAS  Google Scholar 

  17. Anwar, N.S., Osman, R.A.M., Abdullah, S.S.C., and Idris, M.S., Solid State Sci. Tech., 2016, vol. 24, no. 1, pp. 256–263.

    CAS  Google Scholar 

  18. Balakireva, V.B., Stroeva, A.Yu., and Gorelov, V.P., Russ. J. Electro chem., 2005, vol. 41, no. 5, pp. 535–539.

    Article  CAS  Google Scholar 

  19. Kalyakin, A., Lyagaeva, J., Medvedev, D., et al., Sens. Actuators, B, 2016, vol. 225, pp. 446–452.

    Article  CAS  Google Scholar 

  20. Farlenkov, A.S., Smolnikov, A.G., Ananyev, M.V., et al., Solid State Ionics, 2017, vol. 306, pp. 82–88.

    Article  CAS  Google Scholar 

  21. Nomura, K., Takeuchi, T., Tanase, S., et al., Solid State Ionics, 2002, vol. 154, pp. 647–652.

    Article  Google Scholar 

  22. Mizuno, M., Yamada, T., Noguchi, T., and Rouanet, A., Yogyo Kyokai-Shi, 1976, vol. 84, no. 971, pp. 342–348.

    Article  CAS  Google Scholar 

  23. Gorelov, V.P., Martem’yanova, Z.S., and Balakireva, V.B., Inorg. Mater., 1999, vol. 35, no. 2, pp. 208–212.

    Google Scholar 

  24. Okuyama, Y., Kozai, T., Ikeda, S., et al., Electrochim. Acta, 2014, vol. 125, pp. 443–449.

    Article  CAS  Google Scholar 

  25. Alcock, C.B., Fergus, J.W., and Wang, L., Solid State Ionics, 1992, vol. 51, nos. 3–4, pp. 291–295.

    Article  CAS  Google Scholar 

  26. Ruiz-Trejo, E. and Kilner, J.A., Solid State Ionics, 1997, vol. 97, nos. 1–4, pp. 529–534.

    Article  CAS  Google Scholar 

  27. Okuyama, Y., Kozai, T., Sakai, T., et al., Electrochim. Acta, 2013, vol. 95, pp. 54–59.

    Article  CAS  Google Scholar 

  28. Shafiqa, N.A., Idris, M.S., Suhana, C.A., et al., Mater. Sci. Forum, 2015, vol. 819, pp. 117–122.

    Article  Google Scholar 

  29. Mendoza-Mendoza, E., Padmasree, K.P., Montemayor, S.M., and Fuentes, A.F., J. Mater. Sci., 2012, vol. 4, no. 16, pp. 6076–6085.

    Article  CAS  Google Scholar 

  30. Qin, G., Huang, X., Chen, J., and He, Z., Powder Technol., 2013, vol. 235, pp. 880–885.

    Article  CAS  Google Scholar 

  31. Shannon, R.D. and Prewitt, C.T., Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1969, vol. 25, no. 5, pp. 925–946.

    Article  CAS  Google Scholar 

  32. Goldschmidt, V.M., Naturwissenschaften, 1926, vol 14, no. 21, pp. 477–485.

    Article  CAS  Google Scholar 

  33. Ye, C., Yang, J., Yao, L., and Chen, N., Chin. Sci. Bull., 2002, vol. 47, no. 6, pp. 458–460.

    Article  CAS  Google Scholar 

  34. Kröger, F.A. and Vink, H.J., Solid State Phys., 1956, vol. 3, pp. 307–435.

    Article  Google Scholar 

  35. Yamamura, H., Yamazaki, K.I., Kakinuma, K., and Nomura, K., Solid State Ionics, 2002, vol. 150, pp. 255–261.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Lyagaeva.

Additional information

Original Russian Text © A.V. Kas’yanova, Yu.G. Lyagaeva, N.A. Danilov, S.V. Plaksin, A.S. Farlenkov, D.A. Medvedev, A.K. Demin, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 5, pp. 656−663.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kas’yanova, A.V., Lyagaeva, Y.G., Danilov, N.A. et al. Ceramic and Transport Characteristics of Electrolytes Based on Mg-Doped LaYO3. Russ J Appl Chem 91, 770–777 (2018). https://doi.org/10.1134/S1070427218050075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218050075

Navigation