Skip to main content
Log in

Tolerant cathode catalysts for direct methanol fuel cell

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Effect of methanol on the reduction kinetics of oxygen on highly dispersed catalysts 60Pt/C (HiSPEC 9100), 40Pt/carbon nanotubes, and CoFe/carbon nanotubes for the cathode of a direct methanol-oxygen fuel cell was studied. It was shown that the CoFe/carbon nanotubes catalyst surpasses the platinum systems in tolerance to the alcohol. It was found that the tolerance of the cathode catalyst strongly affects the current–voltage characteristics of the fuel cell, which is the principal result of the study and constitutes its scientific novelty. The maximum power density of an alkaline methanol-oxygen fuel cell with nonplatinum cathode (260 mW cm–2) exceeds the characteristics of similar fuel cells with platinum cathode catalysts, both obtained in the present study and described in the literature, which points to the practical importance of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Direct Methanol Fuel Cell Market–-Global Industry Size, Share, Trends, Analysis, and Forecasts 2012–2018.

  2. Zhiani, M., Gasteiger, H.A., Piana, M., and Catanorchi, S., Int. J. Hydrogen Energy, 2011, vol. 36, no. 8, pp. 5110–5116.

    Article  CAS  Google Scholar 

  3. Tripathi, B.P., Kumar, M., and Shahi, V.K., J. Membr. Sci., 2009, vol. 327, no. 1, pp. 145–154.

    Article  CAS  Google Scholar 

  4. Tsivadze, A.Yu., Tarasevich, M.R., Kuzov, A.V., et al., Doklady Phys. Chem., 2008, vol. 421, no. 1, pp. 166–169.

    Article  CAS  Google Scholar 

  5. Zheng, F.-S., Liu, S.-H., and Kuo, C.-W., Int. J. Hydrogen Energy, 2016, vol. 41, no. 4, pp. 2487–2497.

    Article  CAS  Google Scholar 

  6. Kanninen, P., Borghei, M., Sorsa, O., et al., Appl. Catal., B, 2014, vols. 156–157, pp. 341–349.

    Article  Google Scholar 

  7. Sahoo, M., Scott, K., and Ramaprabhu, S., Int. J. Hydrogen Energy, 2015, vol. 40, no. 30, pp. 9435–9443.

    Article  CAS  Google Scholar 

  8. Tarasevich, M.R. and Davydova, E.S., Russ. J. Electrochem., 2016, vol. 52, no. 3, pp. 193–219.

    Article  CAS  Google Scholar 

  9. Tarasevich, M.R., Mazin, P.V., and Kapustina, N.A., Russ. J. Electrochem., 2012, vol. 52, no. 11, pp. 1113–1122.

    Article  Google Scholar 

  10. Tarasevich, M.R., Mazin, P.V., and Kapustina, N.A., Russ. J. Electrochem., 2011, vol. 47, no. 8, pp. 923–932.

    Article  CAS  Google Scholar 

  11. Bogdanovskaya, V.A., Tarasevich, M.R., and Lozovaya, O.V., Russ. J. Electrochem., 2011, vol. 47, no. 7, pp. 846–860.

    Article  CAS  Google Scholar 

  12. Tarasevich, M.R., Bogdanovskaya, V.A., and Mazin, P.V., Russ. J. Electrochem., 2010, vol. 46, no. 5, pp. 846–860.

    Article  Google Scholar 

  13. Korchagin, O.V., Bogdanovskaya, V.A., Tarasevich, M.R., et al., Katal. Prom–sti, 2016, vol. 16, no. 2, pp. 48–56.

    Google Scholar 

  14. Avakov, V.B., Aliev, A.D., Bogdanovskaya, V.A., et al., Russ. J. Phys. Chem., A, 2015, vol. 89, no. 5, pp. 887–893.

    Article  CAS  Google Scholar 

  15. Bogdanovskaya, V.A., Krasil’nikova, O.K., Kuzov, A.V., et al., Russ. J. Electrochem., 2015, vol. 51, no. 7, pp. 602–614.

    Article  CAS  Google Scholar 

  16. Soboleva, T., Zhao, X., Malek, K., et al., Appl. Mater. Interfaces, 2010, vol. 2, no. 2, pp. 375–384.

    Article  CAS  Google Scholar 

  17. Soboleva, T., Malek, K., Xie, Z., et al., Appl Mater. Interfaces, 2011, vol. 3, no. 6, pp. 1827–1837.

    Article  CAS  Google Scholar 

  18. Fukuta, K., Electrolyte Materials for AMFCs and AMFC Perfomance, Tokuyama Corp., May 8, 2011.

    Google Scholar 

  19. Yang, D., Yu, H., Li, G., et al., Chin. J. Catal., 2014, vol. 35, no. 7, pp. 1091–1097.

    Article  CAS  Google Scholar 

  20. Prakash, G.K.S., Krause, F.C., Viva, F.A., et al., J. Power Sources, 2011, vol. 196, no. 19, pp. 7967–7972.

    Article  CAS  Google Scholar 

  21. Tarasevich, M.R., Korchagin, O.V., and Kuzov, A.V., Russ. Chem. Rev., 2013, vol. 82, no. 11, pp. 1047–1065.

    Article  CAS  Google Scholar 

  22. Antolini, E. and Gonzalez, E.R., J. Power Sources, 2010, vol. 195, no. 11, pp. 3431–3450.

    Article  CAS  Google Scholar 

  23. Yu, E.H., Krewer, U., and Scott, K., Energies, 2010, vol. 3, no. 8, pp. 1499–1528.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Korchagin.

Additional information

Original Russian Text © O.V. Korchagin, V.N. Andreev, A.Yu. Aleksandrovskaya, V.A. Bogdanovskaya, M.R. Tarasevich, 2016, published in Zhurnal Prikladnoi Khimii, 2016, Vol. 89, No. 7, pp. 894−902.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korchagin, O.V., Andreev, V.N., Aleksandrovskaya, A.Y. et al. Tolerant cathode catalysts for direct methanol fuel cell. Russ J Appl Chem 89, 1089–1096 (2016). https://doi.org/10.1134/S1070427216070077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216070077

Navigation