Skip to main content
Log in

Co(II), Ni(II), and Cu(II) Complexes Containing Isatin-Based Schiff Base Ligand: Synthesis, Physicochemical Characterization, DFT Calculations, Antibacterial Activity, and Molecular Docking Analysis

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Schiff base ligand [3-(2-hydroxyphenylimino)-1,3-dihydroindol-2-one] was synthesized by the condensation reaction of isatin with 2-aminophenol. The Schiff base and its metal complexes with Co(II), Ni(II), and Cu(II) and ions were permeated by 1H NMR, IR, elemental analysis, ESI-MS spectroscopy, electronic spectroscopy, and some physicochemical measurements. The Schiff base behaved as a tridentate ligand in all metal complexes and was linked by azomethine nitrogen (=C=N). Supported by analytical data the metal-ligand stoichiometry in the formation of complexes was found as 1 : 2 molecular ratio. Based on analytical data allied with spectroscopic studies spilled that the Cu(II) complex preferred tetrahedral geometry, while Ni(II) and Co(II) complexes offered square planar and octahedral geometry, respectively. The complexes were undergone thermal analysis (TGA and DTG); complexes were found thermally stable up to 200°C. All the stable assembled compounds were assessed for antibacterial competency. The ligand and the complexes were played mild to sturdy antibacterial activity against numerous pathogenic bacterial species, although growth inhibitory activities of complexes were enhanced comparatively than their respective ligands. Additionally, molecular docking analysis and quantum computational calculations based on the density functional theory (DFT) approach were used to study the molecular characteristics of the novel complexes and provide in-depth insights into their involvement in their ability to restrict bacterial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Scheme
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Mathur, G., Sharma, P.K., and Nain, S., Curr. Bioact. Mol., 2018, vol. 4, p. 211. https://doi.org/10.2174/1573407213666170221154354

    Article  CAS  Google Scholar 

  2. Hossain, M.S., Zakaria, C.M., and Kudrat-E-Zahan, Md., Asian J. Res. Chem., 2017, vol. 10, p. 6. https://doi.org/10.5958/0974-4150.2017.00002.5

    Article  Google Scholar 

  3. Sergienko, V.S., Koksharova, T.V., and Surazhskaya, M.D., Russ. J. Inorg. Chem., 2018, vol. 63, p. 1171. https://doi.org/10.1134/S0036023618090176

    Article  CAS  Google Scholar 

  4. Pahontu, E., Julea, F., Rosu, T., Purcarea, V., Chumakov, Y., Petrenco, P., and Gulea, A., J. Cell. Mol. Med., 2015, vol. 19, p. 865. https://doi.org/10.1111/jcmm.12508

    Article  CAS  Google Scholar 

  5. Pandeya, S.N., Sriram, D., Nath, G., and Declercq, E., Eur. J. Pharmacol., 1999, vol. 9, p. 25. https://doi.org/10.1016/s0928-0987(99)00038-x

    Article  CAS  Google Scholar 

  6. Vinogradova, K.A., Rakhmanova, M.I., and Nikolaenkova, E.B., Russ. J. Coord. Chem., 2022, vol. 48, p. 301. https://doi.org/10.1134/S1070328422050098

    Article  CAS  Google Scholar 

  7. Patel, P.N., Desai, D.H., and Patel, N.C., Russ. J. Coord. Chem., 2021, vol. 47, p. 909. https://doi.org/10.1134/S1070328421120010

    Article  CAS  Google Scholar 

  8. Zhu, X., Wang, C., Lu, Z., and Dang, Y., Trans. Metal Chem., 1997, vol. 22, p. 9. https://doi.org/10.1023/A:1018453316348

    Article  Google Scholar 

  9. Tian, X., Li, Y., and Zhang, Y., J. Struct. Chem., 2021, vol. 62, p.1872. https://doi.org/10.1134/S0022476621120076

    Article  CAS  Google Scholar 

  10. Latif, M.A., Tofaz, T., Chaki, B.M., Tariqul Islam, H.M., Hossain, M.S., and Kudrat-E-Zahan, M., Russ. J. Gen. Chem., 2019, vol. 89, p.1197. https://doi.org/10.1134/S107036321906015X

    Article  CAS  Google Scholar 

  11. Chohan, Z.H., Pervez, H., Rauf, A., Khan, K.M., and Supuran, C.T., J. Enzyme Inhib. Med. Chem., 2004, vol. 19, p. 417. https://doi.org/10.1080/14756360410001710383

    Article  CAS  Google Scholar 

  12. Uvarova, M.A. and Nefedov, S.E., Russ. J. Inorg. Chem., 2021, vol. 66, p. 1837. https://doi.org/10.1134/S0036023621120202

    Article  CAS  Google Scholar 

  13. Shaxma, C.L., Mishra, V., and Narvi, S.S., Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 2006, vol. 16, p. 243. https://doi.org/10.1080/00945718608057529

    Article  Google Scholar 

  14. Nakamato, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1978.

  15. West, D.X., Ooms, C.E., Saleda, J.S., Gebremedhin, H., and Liberta, A.E., Trans. Metal Chem., 1994, vol. 19, p. 553.

    Article  CAS  Google Scholar 

  16. Farhana, A., Dalia, S.A., Hossain, M.S., Sarker, S., and Kudrat-E-Zahan, M., Asian J. Chem. Sci., 2018, vol. 4, p. 1. https://doi.org/10.9734/ajocs/2018/40913

    Article  CAS  Google Scholar 

  17. Yambulatov, D.S., Nikolaevskii, S.A., and Lutsenko, I.A., Kiskin, M.A., Shmelev, M.A., Bekker, O.B., Efimov, N.N., Ugolkova, E.A., Minin, V.V., Sidorov, A.A., and Eremenko, I.L., Russ. J. Coord. Chem., 2020, vol. 46, p. 772. https://doi.org/10.1134/S1070328420110093H

    Article  CAS  Google Scholar 

  18. Comprehensive Coordination Chemistry, ed. G. Wilkinson, Oxford: Pergamon press, 1987, vol. 6, p. 325.

  19. The Chemistry of Functional Groups, Patai, S., Ed., New York: Wiley, 1983, p. 140.

  20. Ismael, M., Abdou, A., and Abdel-Mawgoud, A.M., Z. anorg. allg. Chem., 2018, p. 1203. https://doi.org/10.1002/zaac.201800230

  21. Abdou, A., Omran, O.A., Nafady, A., and Antipin, I.S., Arab. J. Chem., 2022, vol. 15, p. 103656. https://doi.org/10.1016/j.arabjc.2021.103656

    Article  CAS  Google Scholar 

  22. Ismael, M., Abdel-Mawgoud, A.M., Rabia, M.K., and Abdou, A., J. Mol. Struct., 2021, vol. 1227, p. 129695. https://doi.org/10.1016/j.molstruc.2020.129695

    Article  CAS  Google Scholar 

  23. Ismael, M., Abdel-Mawgoud, A.M., Rabia, M.K., and Abdou, A., J. Mol. Liq., 2021, vol. 330, p. 115611. https://doi.org/10.1016/j.molliq.2021.115611

    Article  CAS  Google Scholar 

  24. Hashem, H.E., Nath, A., and Kumer, A., J. Mol. Struct., 2022, vol. 1250, p. 131915. https://doi.org/10.1016/j.molstruc.2021.131915

    Article  CAS  Google Scholar 

  25. Ismael, M., Abdel-Mawgoud, A.M., Rabia, M.K., and Abdou, A., Inorg. Chim. Acta, 2020, vol. 505, p. 119443. https://doi.org/10.1016/j.ica.2020.119443

    Article  CAS  Google Scholar 

  26. Abdou, A. and Mawgoud, M.A., Appl. Organomet. Chem., 2022, p. 6600. https://doi.org/10.1002/aoc.6600

  27. Mohapatra, R.K., Sarangi, A.K., Azam, M., El-Ajaily, M.M., Kudrat-E-Zahan, M., Patjoshi, S.B., and Dash, D.C., J. Mol. Struct., 2019, vol. 1179, p. 65. https://doi.org/10.1016/j.molstruc.2018.10.070

    Article  CAS  Google Scholar 

  28. Kudrat-E-Zahan, Md. and Islam, M.S., Russ. J. Gen. Chem., 2015, vol. 85, p. 979. https://doi.org/10.1134/S1070363215040350

    Article  CAS  Google Scholar 

  29. Shokr, E.Kh., Kamel, M.S., Abdel-Ghany, H., El-Remaily, M.A.A.A., and Abdou, A., Mater. Chem. Phys., 2022, vol. 290, p. 126646. https://doi.org/10.1016/j.matchemphys.2022.126646

    Article  CAS  Google Scholar 

  30. Elkanzi, N.A.A., Ali, A.M., Hrichi, H., and Abdou, A., Appl. Organomet. Chem., 2022, vol. 36, p. e6665. https://doi.org/10.1002/aoc.6665

  31. Abdou, A., J. Mol. Struct., 2022, vol. 1262, p. 132911. https://doi.org/10.1016/j.molstruc.2022.132911

    Article  CAS  Google Scholar 

  32. Abu-Dief, A.M., Alotaibi, N.H., Al-Farraj, E.S., Qasem, H.A., Alzahrani, S., Mahfouz, M.K., and Abdou, A., J. Mol. Liq., 2022, vol. 365, p. 119961. https://doi.org/10.1016/j.molliq.2022.119961

    Article  CAS  Google Scholar 

  33. Hrichi, H., Elkanzi, N.A.A., Ali, A.M., and Abdou, A., Res. Chem. Intermed., 2022. https://doi.org/10.1007/s11164-022-04905-4

  34. Abdou, A., Mostafa, H.M., and Abdel-Mawgoud, A.M., Inorg. Chim. Acta, 2022, vol. 539, p. 121043. https://doi.org/10.1016/j.ica.2022.121043

    Article  CAS  Google Scholar 

  35. Abdou, A., Mostafa, H.M., and Abdel-Mawgoud, M.A., Sohag J. Sci., 2022, vol. 6, p. 167. https://doi.org/10.21608/SJSCI.2022.151396.1016

    Article  Google Scholar 

  36. Elkanzi, N.A.A., Ali, A.M., Albqmi, M., and Abdou, A., Appl. Organomet. Chem., 2022, vol. 36, p. e6868. https://doi.org/10.1002/aoc.6868

  37. Elkanzi, N.A.A., Hrichi, H., Salah, H., Albqmi, M., Ali, A.M., and Abdou, A., Polyhedron, 2023, vol. 230, p. 116219. https://doi.org/10.1016/j.poly.2022.116219

    Article  CAS  Google Scholar 

  38. Alghuwainem, Y.A.A., Abd El-Lateef, H.M., Khalaf, M.M., Abdelhamid, A.A., Alfarsi, A., Gouda, M., Abdelbaset, M., and Abdou, A., J. Mol. Liq., 2023, vol. 369, p. 120936. https://doi.org/10.1016/j.molliq.2022.120936

    Article  CAS  Google Scholar 

  39. Alghuwainem, Y.A.A., El-Lateef, H.M.A., Khalaf, M.M., Amer, A.A., Abdelhamid, A.A., Alzharani, A.A., Alfarsi, A., Shaaban, S., Gouda, M., and Abdou, A., Int. J. Mol. Sci., 2022, vol. 23, p. 15614. https://doi.org/10.3390/ijms232415614

    Article  CAS  Google Scholar 

  40. Arafath, Md.A., Adam, F., Ahamed, M.B.K., Karim, M.R., Uddin, Md.N., Yamin, B.M., and Abdou, A., J. Mol. Struct., 2022, p. 134887. https://doi.org/10.1016/j.molstruc.2022.134887

Download references

ACKNOWLEDGMENTS

The authors are thankful to the Department of Chemistry, University of Rajshahi, Bangladesh for providing the laboratory facilities. The part of this work is supported by the UGC project funded by Begum Rokeya University, Rangpur, Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Kudrat-E-Zahan.

Ethics declarations

No conflict of interest was declared by the authors.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.S., Khushy, K.A., Latif, M.A. et al. Co(II), Ni(II), and Cu(II) Complexes Containing Isatin-Based Schiff Base Ligand: Synthesis, Physicochemical Characterization, DFT Calculations, Antibacterial Activity, and Molecular Docking Analysis. Russ J Gen Chem 92, 2723–2733 (2022). https://doi.org/10.1134/S1070363222120222

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222120222

Keywords:

Navigation