Skip to main content
Log in

Synthesis of 5-Arylisoxazole and 4,5-Dichloroisothiazole Amino-Substituted Derivatives and Their Biological Activity

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A series of amino derivatives of 5-arylisoxazoles and 4,5-dichloroisothiazole with primary and secondary amino groups was synthesized. 3-Aminomethyl-5-arylisoxazol-3-ylmethanamines were obtained on the basis of 5-aryl-3-(chloromethyl)isoxazoles using the Gabriel phthalimide method. 5-Arylisoxazol-3-yl- and 4,5-dichloroisothiazol-3-ylallylamines were synthesized in two ways: reduction of azomethines obtained by condensation of 5-arylisoxazolyl- and 4,5-dichloroisothiazolyl-3-carbaldehydes with allylamine, and by nucleophilic substitution of the chlorine atom in 3-chloromethyl derivatives of the corresponding azoles by reaction with allylamine. Amides and sulfonamides of azolylallylamines were synthesized. Some of the compounds obtained showed antibacterial and fungicidal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Akritopoulou-Zanze, S.W. and Djuri, C., Top. Het. Chem., 2010, vol. 25, p. 231. https://doi.org/10.1007/7081_2010_4

    Article  CAS  Google Scholar 

  2. Agrawal, N. and Mishra, P., Med. Chem. Res., 2018, vol. 27, p. 1309. https://doi.org/10.1007/s00044-018-2152-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alam, M.A., Shimada, K., Khan, M.W., and Hossain, M.D., Med. Anal. Chem. Int. J., 2019, vol. 3, p. 1. https://doi.org/10.23880/macij-16000137

    Article  Google Scholar 

  4. Kletskov, A.V., Potkin, V.I., Kolesnik, I.A., Petkevich, S.K., Kvachonak, A.V., Dosina, M.O., Loiko, D.O., Larchenko, M.V., Pashkevich, S.G., and Kulchitsky, V.A., Nat. Prod. Commun., 2018, vol. 13, p. 1507. https://doi.org/10.1177/1934578X1801301124

    Article  Google Scholar 

  5. Kumar, D. and Jain, S.K., Curr. Med. Chem., 2016, vol. 23, p. 4338. https://doi.org/10.2174/0929867323666160809093930

    Article  CAS  PubMed  Google Scholar 

  6. Kislyi, V.P., Danilova, E.B., and Semenov, V.V., Adv. Het. Chem., 2007, vol. 94, p. 173. https://doi.org/10.1016/S0065-2725(06)94003-3

    Article  CAS  Google Scholar 

  7. Swiatek, P. and Malinka, W., Acta Pol. Pharm., 2004, vol. 61, p. 98. PMID: 15909955.

    CAS  PubMed  Google Scholar 

  8. Bärfacker, L., Siemeister, G., Heinrich, T., Prechtl, S., Stöckigt, D., and Rottmann, A., Pat. WO 2015113920, 2015.

  9. Lemieux, R.U. and Raap, R., Pat. Japan, 52031345, 1977.

  10. Machon, Z. and Kuczynski, L., Pat. Poland 70257, 1974.

  11. Burow, K.W., Jr., Pat. EP 129408 (1984).

  12. Davis, R.H. and Krummel, G., Pat. EP 623282, 1994.

  13. Lehr, S., Bernier, D., Droege, T., Mosrin, M., Rey, J., and Tiebes, J., Abstracts of 256th ACS Nat. Meet. & Expos., Boston, 2018.

  14. Gewald, K. and Bellmann, P., Lieb. Ann. Chem., 1979, vol. 10, p. 1534. https://doi.org/10.1002/chin.198006252

  15. Boeshagen, H. and Geiger, W., Lieb. Ann. Chem., 1977, vol. 1, p. 20. https://doi.org/10.1002/chin.197717197

    Article  Google Scholar 

  16. Goerdeler, J. and Pohland, H.W., Angew. Chem., 1960, vol. 72, p. 77. https://doi.org/10.1002/ange.19600720208

    Article  CAS  Google Scholar 

  17. Shao, D. and Huang, C., Pat. CN 103242256, 2013.

  18. Wang, Z., Pat. CN 110713467, 2020.

  19. Potkin, V.I., Petkevich, S.K., Kletskov, A.V., Dikusar, E.A., Zubenko, Yu.S., Zhukovskaya, N.A., Kazbanov, V.V., and Pashkevich, S.G., Russ. J. Org. Chem., 2013, vol. 49, no. 10, p. 1523. https://doi.org/10.1134/S1070428013100205

    Article  CAS  Google Scholar 

  20. Potkin, V.I., Bumagin, N.A., Petkevich, S.K., Dikusar, E.A., Semenova, E.V., Kurman, P.V., Zolotar’, R.M., Pashkevich, S.G., Gurinovich, T.A., and Kul’chitskii, V.A., Russ. J. Org. Chem., 2015, vol. 51, no. 8, p. 1119. https://doi.org/10.1134/S1070428015080102

    Article  CAS  Google Scholar 

  21. Kletskov, A.V., Potkin, V.I., Dikusar, E.A., and Zolotar’, R.M., Nat. Prod. Compd., 2017, vol. 12, p. 105. https://doi.org/10.1177/1934578X1701200130

    Article  Google Scholar 

  22. Potkin, V.I., Dikusar, E.A., and Petkevich, S.K., Doklady Nats. Akad. Belarusi, 2008, no. 52, p. 60.

    CAS  Google Scholar 

  23. Bumagin, N.A., Zelenkovskii, V.M., Kletskov, A.V., Petkevich, S.K., Dikusar, E.A., and Potkin, V.I., Russ. J. Gen. Chem., 2016, vol. 86, no. 1, p. 68. https://doi.org/10.1134/S1070363216010138

    Article  CAS  Google Scholar 

  24. Yadav, K. and Yadav, L.D.S., RSC Adv., 2014, vol. 4, p. 34764. https://doi.org/10.1039/C6RA02365G

    Article  CAS  Google Scholar 

  25. Bousfield, T.W., Pearce, K.P.R., Nyamini, S.B., Angelis-Dimakis, A., and Camp, J.E., Green Chem., 2019, vol. 21, p. 3675. https://doi.org/10.1039/c9gc01180c

    Article  CAS  Google Scholar 

  26. Sköld, O., Drug Resistance Updates, 2000, vol. 3, p. 155. https://doi.org/10.1054/drup.2000.0146

    Article  PubMed  Google Scholar 

  27. Nechai, N.I., Dikusar, E.A., Potkin, V.I., and Kaberdin, R.V., Russ. J. Org. Chem., 2004, vol. 40, no. 7, p. 1009. https://doi.org/10.1023/B:RUJO.0000045195.47004.a9

    Article  CAS  Google Scholar 

  28. Potkin, V.I., Gadzhily, R.A., Dikusar, E.A., Petkevich, S.K., Zhukovskaya, N.A., Aliev, A.G., and Nagieva, Sh.F., Russ. J. Org. Chem., 2012, vol. 48, p. 127. https://doi.org/10.1134/S1070428012010216

    Article  CAS  Google Scholar 

  29. Clinical and Laboratory Standards Institute (CLSI), Performance Standards for Antimicrobial Disc Susceptibility Tests. CLSI Document M02-A12, CLSI, Wayne, PA, 2015.

  30. Yang, J., Guan, A., Li, Z., Zhang, P., and Liu, C., J. Agric. Food Chem., 2020, vol. 68, p. 6485. https://doi.org/10.1021/acs.jafc.9b07055

    Article  CAS  PubMed  Google Scholar 

  31. Steyermark, A., Quantitative Organic Microanalysis, New York: Academic Press, 1961.

Download references

Funding

This work was supported by the Belarusian Republican Foundation for Basic Research (project no. X19PM-003) and the Russian Foundation for Basic Research (project no. 19-53-04002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kolesnik.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnik, I.A., Petkevich, S.K., Mertsalov, D.F. et al. Synthesis of 5-Arylisoxazole and 4,5-Dichloroisothiazole Amino-Substituted Derivatives and Their Biological Activity. Russ J Gen Chem 92, 29–39 (2022). https://doi.org/10.1134/S1070363222010066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222010066

Keywords:

Navigation