Skip to main content
Log in

Synthesis, Structural Characterization, Thermogravimetric, and Molecular Modelling of Novel Mn(II), Co(II), and Ni(II) Metal Complexes Derived from New Synthesized 4,6-Diaryl-2-oxonicotinonitrile Ligand

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Novel coordination compounds of Mn(II), Co(II), and Ni(II) with a new 4-(4-chlorocyclohexyl)-2-oxo-6-(thien-2-yl)-1,2-dihydropyridine-3-carbonitrile ligand (L) have been synthesized. Melting point, elemental analysis, spectroscopic techniques (IR, 1H NMR, UV–Vis, and mass spectrometry), molar conductivity and thermo gravimetric analyzes were used to characterize the structures having the formulae: [Mn(L)2(H2O)2]SO4 (1), [Co(L)2(H2O)2]Cl2 (2), and [Ni(L)2(H2O)2]SO4·8H2O (3). The (L) reacts by 1 : 2 ratios with metal ions. Using infrared spectral data, it was noticed that L ligand coordinates as neutral NO bidentate along with the oxygen of keto-lactam (NH–C=O) and nitrogen of carbonitrile (C≡N) groups. Compounds 13 are electrolytic in nature according to the conductivity measurements. Magnetic moment and UV–Visible data depicts the octahedral environment around the studied metal ion. Moreover, Thermal analysis granted a concept around the decaying manner of L and its complexes. It also assessed the quantity of water molecules in the complexe’s inner and outer spheres. For all complexes an octahedral geometry has been proposed. TGA data shows the different degradations steps that have been utilized to calculate valuable thermodynamic and kinetic descriptors using two comparable methods. Furthermore, theoretical studies by DFT demonstrate a high consistent with the experimental data. Antimicrobial effectiveness of the L and its metal complexes were examined versus a diversity of pathogenic G(+ve) and G(–ve) bacteria and fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Scheme 2.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Scheme 3.

Similar content being viewed by others

REFERENCES

  1. Jayakumar, S., Ishar, M.P.S., and Mahajan, M.P., Tetrahedron, 2002, vol. 58, p. 379.

    Article  CAS  Google Scholar 

  2. Zeni, G. and Larock, R.C., Chem. Rev., 2004, vol. 104, p. 2285 https://doi.org/10.1021/cr020085h

    Article  CAS  PubMed  Google Scholar 

  3. Sangu, K., Fuchibe, K., and Akiyama, T., Org. Lett., 2004, vol. 6, p. 353. https://doi.org/10.1021/ol036190a

    Article  CAS  PubMed  Google Scholar 

  4. Busto,E., Fernadez, V.G., and Gotor, V., Arkivoc, 2010, vol. 3, p. 114.

  5. Mitsuya, H., Yarchoan, R., and Broder, S., Science, 1990, vol. 249, p. 1533. https://doi.org/10.1126/science.1699273

    Article  CAS  Google Scholar 

  6. Montgomery, J.A., Antiviral Res., 1989, vol. 12, p. 113. https://doi.org/10.1016/0166-3542(89)90046-6

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, X., Li, D., Fan, X., Wang, X., Li, X., and Qu, G., Mol. Divers., 2010, vol. 14, p. 159. https://doi.org/10.1007/s11030-009-9168-2

    Article  CAS  PubMed  Google Scholar 

  8. El-Sayed, H.A., Moustafa, A.H., Haikal, A.Z., Abu-El-Halawa, R., and ElAshry, E.H., Eur. J. Med. Chem., 2011, vol. 46, p. 2948. https://doi.org/10.1016/j.ejmech.2011.04.019

    Article  CAS  PubMed  Google Scholar 

  9. Ahmed, O.M., Mohamed, M.A., Ahmed, R.R., and Ahmed, S.A., Eur. J. Med. Chem., 2009, vol. 44, p. 3519. https://doi.org/10.1016/j.ejmech.2009.03.042

    Article  CAS  PubMed  Google Scholar 

  10. Wang, L., Lin, N., Li, Q., Henry, R.F., Zhang, H., Cohen, J., Gu, W., Marsh, K.C., Bauch, J.L., Rosenberg, S.H., and Sham, H.L., Bioorg. Med. Chem. Lett., 2004, vol. 14, p. 4603. https://doi.org/10.1016/j.bmcl.2004.07.004

    Article  CAS  PubMed  Google Scholar 

  11. Khalil, N.S.A.M., Carbohydr. Res., 2006, vol. 341, p. 2187. https://doi.org/10.1016/j.carres.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  12. Mamolo, M.G., Zampieri, D., Falagiani, V., Vio, L., and Banfi, E., II Farmaco., 2001, vol. 56, p. 593. https://doi.org/10.1016/S0014-827X(01)01098-9

    Article  CAS  Google Scholar 

  13. Saad, H.A., Mokbil, M.N., El-Gendy, A.M., and Haikal, A.Z., Synth. Commun., 2002, vol. 32, p. 1189. https://doi.org/10.1081/SCC-120003609

    Article  CAS  Google Scholar 

  14. Hopkinson, M.N., Richter, C., Schedler, M., and Glorius, F., Nature, 2014, vol. 510, p. 485. https://doi.org/10.1038/nature13384

    Article  CAS  PubMed  Google Scholar 

  15. Nelson, D.J. and Nolan, S.P., Chem. Soc. Rev., 2013, vol. 42, p. 6723. https://doi.org/10.1039/C3CS60146C

    Article  CAS  Google Scholar 

  16. Jacobsen, H., Correa, A., Poater, A., Costabile, C., and Cavallo, L., Coord. Chem. Rev., 2009, vol. 253, p. 687. https://doi.org/

    Article  CAS  Google Scholar 

  17. Droge, T. and Glorius, F., Angew. Chem. Int. Ed., 2010, vol. 49, p. 6940. https://doi.org/10.1002/anie.201001865

    Article  CAS  Google Scholar 

  18. Mercs, L. and Albrecht, M., Chem. Soc. Rev., 2010, vol. 39, p. 1903. https://doi.org/10.1039/B902238B

    Article  CAS  PubMed  Google Scholar 

  19. Aher, S.B., Muskawar, P.N., Thenmozhi, K., and Bhagat, P.R., Eur. J. Med. Chem., 2014, vol. 81, p. 408. https://doi.org/10.1016/j.ejmech.2014.05.036

    Article  CAS  PubMed  Google Scholar 

  20. Małecki, J.G., Jaworska, Kruszynski, M.R., and Gil-Bortnowska, R., Polyhedron., 2005, vol. 24, p. 1445. https://doi.org/10.1016/j.poly.2005.03.092

    Article  CAS  Google Scholar 

  21. Reedijk, J., Chem. Commun., 1996, vol. 7, p. 801. https://doi.org/10.1039/CC9960000801

    Article  Google Scholar 

  22. Gkionis, K. and Platts, J.A., Comput. Theor. Chem., 2012, vol. 993, p. 60. https://doi.org/10.1016/j.comptc.2012.05.034

    Article  CAS  Google Scholar 

  23. Quiroga, A.G., J. Inorg. Biochem., 2012, vol. 114, p. 106. https://doi.org/10.1016/j.jinorgbio.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  24. El-Shwiniy, W.H., Gamil, M.A., Sadeek, S.A., Zordok, W.A., and El-farargy, A.F., Appl. Organometal. Chem., 2020, vol. 34, p. 5696. https://doi.org/10.1002/aoc.5696

    Article  CAS  Google Scholar 

  25. Yu, Y.Y., Xian, H.D., Liu, J.F., and Zhao, G.L., Molecules, 2009, vol. 14, p. 1747 https://doi.org/10.3390/molecules14051747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gaber, M., El-Sayed, Y.S., El-Baradie, K., and Fahmy, R.M., J. Mol. Struct., 2013, vol. 1032, p. 185. https://doi.org/10.1016/j.molstruc.2012.07.019

    Article  CAS  Google Scholar 

  27. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed., New York: Wiley, 1986. https://doi.org/10.1002/bbpc.198800131

  28. Sadeek, S.A., Abd El-Hamid, S.M., Mohamed, A.A., Zordok, W.A., and Elsayed, H.A., Appl. Organometal. Chem., 2019, vol. 33, p. 4889. https://doi.org/10.1002/aoc.4889

    Article  CAS  Google Scholar 

  29. Mohamed, A.A., Sadeek, S.A., Abd El-Hamid, S.M., Zordok, W.A., and Awad, H.A., J. Mol. Struct., 2019, vol. 1197, p. 628. https://doi.org/10.1016/j.molstruc.2019.07.095

    Article  CAS  Google Scholar 

  30. Refat, M.S., Spectrochim. Acta. Part A., 2007, vol. 68, p. 1393. https://doi.org/10.1016/j.saa.2006.12.078

    Article  CAS  Google Scholar 

  31. Pasomas, G., Tarushi, A., and Efthimiadou, E.K., Polyhedron, 2008,vol. 27, p. 133. https://doi.org/10.1016/j.poly.2007.08.043

  32. Emam, S.M., Abouel-Enein, S.A., and Abdel-Satar, E.M., Appl. Organometal. Chem., 2019, vol. 33, p. 4847. https://doi.org/10.1002/aoc.4847

    Article  CAS  Google Scholar 

  33. Emam,S.M., Abouel-Enein, S.A., and Abouzayed, F.I., Appl.Organometal. Chem., 2018, vol. 32, p. 4073. https://doi.org/10.1002/aoc.4073

  34. Sadeek, S.A., Mohamed, A.A., El-Sayed, H.A., and El-Attar, M.S., Appl Organometal Chem., 2020, vol. 34, p. 5334. https://doi.org/10.1002/aoc.5334

    Article  CAS  Google Scholar 

  35. Nakamoto, K., McCarthy, P.J., FuJiwara, S., Shimura, Y., Fujita, J., Hare, C.R., and Saito, Y., Spectroscopy and Structure of Metal Chelate Compounds, New York: John Wiley and Sons, Inc., 1968.

  36. Zordok, W.A., Spectrochimica Acta A, 2014, vol. 129, p. 519. https://doi.org/10.1016/j.saa.2014.02.087

    Article  CAS  Google Scholar 

  37. Elshafie, H.S., Sadeek, S.A., Zordok, W.A., and Mohamed, A.A., Molecules, 2021, vol. 26, p. 1480. https://doi.org/10.3390/molecules26051480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sadeek, S.A., Abd El-Hamid, S.M., and Zordok, W.A., Appl. Organomet. Chem., 2018, vol. 32, p. 4457. https://doi.org/10.1002/aoc.4457

    Article  CAS  Google Scholar 

  39. Mohamed, A.A., and Sadeek, S.A., Appl. Organomet. Chem., 2021, vol. 35, p. 6178. https://doi.org/10.1002/aoc.6178

    Article  CAS  Google Scholar 

  40. Sadeek, S.A., Refat, M.S., Teleb, S., and Elmegharbel, S.M., J. Mol. Struct., 2005, vol. 737, p. 139. https://doi.org/10.1016/j.molstruc.2004.10.017

    Article  CAS  Google Scholar 

  41. Lever, A.B.P., Coord. Chem. Rev., 1968, vol. 3, p. 119. https://doi.org/10.1016/S0010-8545(00)80107-1

    Article  CAS  Google Scholar 

  42. Mohamed, G.G., Zayed, E.M., and Hindy, A.M., Spectrochim. Acta A, 2015, vol. 145, p. 76. https://doi.org/10.1016/j.saa.2015.01.129

    Article  CAS  Google Scholar 

  43. Mohamed, G.G., El-Gamel, N.E.A., and Teixidor, F., Polyhedron, 2001, vol. 20, p. 2689. https://doi.org/10.1016/S0277-5387(01)00867-1

    Article  CAS  Google Scholar 

  44. Zordok, W.A., Sadeek, S.A., and El-Farargy, A.F., J. Iran. Chem. Soc., 2017, vol. 14, p. 2529. https://doi.org/10.1007/s13738-017-1188-8

    Article  CAS  Google Scholar 

  45. Coats, A.W. and Redfern, J.P., Nature, 1964, vol. 201, p. 68. https://doi.org/10.1038/201068a0

  46. Horowitz, H.W., and Metzger, G., Traces. Anal. Chem., 1963, vol. 35, p. 1464. https://doi.org/10.1021/ac60203a013

  47. El-Gammal, O.A., Spectrochim. Acta Mol. Biomol. Spectrosc., 2010, vol. 75, p. 533. https://doi.org/10.1016/j.saa.2009.11.007

    Article  CAS  Google Scholar 

  48. Abu El-Reash, G.M., El-Gammal, O.A., Ghazy, S.E., and Radwan, A.H., Spectrochim. Acta Mol. Biomol. Spectrosc., 2013, vol. 104, p. 26. https://doi.org/10.1016/j.saa.2012.11.008

    Article  CAS  Google Scholar 

  49. Geerlings, P., Proft, F.De., and Langenaeker, W., Chem. Rev., 2003, vol. 103, p. 1793. https://doi.org/10.1021/cr990029p

    Article  CAS  PubMed  Google Scholar 

  50. Parr, R.G., J. Am. Chem. Soc., 1999, vol. 121, p. 1922. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  51. Chattaraj, P.K. and Giri, S., J. Phys. Chem. A, 2007, vol. 111, p. 11116. https://doi.org/10.1021/jp0760758

    Article  CAS  PubMed  Google Scholar 

  52. Speie, G., Csihony, J., Whalen, A.M., and Pie-Pont, C.G., Inorg. Chem., 1996, vol. 35, p. 3519. https://doi.org/10.1021/ic950805l

    Article  Google Scholar 

  53. Aihara, A., J. Phys. Chem. A, 1999, vol. 103, p. 7487. https://doi.org/10.1021/jp990092i

    Article  CAS  Google Scholar 

  54. Haddon, R.C., and Fukunaga, T., Tetrahedron Lett., 1988, vol. 29, p. 4843. https://doi.org/10.1016/S0040-4039(00)80623-1

    Article  Google Scholar 

  55. Parr, R.G., and Chattara, P.K., J. Am. Chem. Soc., 1991, vol. 113, p. 1854. https://doi.org/10.1021/ja00005a072

    Article  CAS  Google Scholar 

  56. Emara, A.A.A., Spectrochim. Acta, Part A, 2010, vol. 77, p. 117. https://doi.org/10.1016/j.saa.2010.04.036

    Article  CAS  Google Scholar 

  57. Sengupta, S.K., Pandey, O.P., Srivastava, B.K., Sharma, V.K., Trans. Met. Chem., 1998, vol. 23, p. 349. https://doi.org/10.1023/A:1006986131435

    Article  CAS  Google Scholar 

  58. Ekinci, M.D. and Tümer, F., Spectrochim. Acta, Part A, 2007, vol. 67, p. 916. https://doi.org10.1016/j.saa.2006.09.009/

    Article  Google Scholar 

  59. Abdel Aziz, A.A., Salem, A.N.M., Sayed, M.A., and Aboaly, M.M., J. Mol. Struct., 2012, vol. 1010, p. 130. https://doi.org/10.1016/J.MOLSTRUC.2011.11.043

    Article  CAS  Google Scholar 

  60. Carcelli, M., Mazza, P., Pelizzi, C., Pelizzi, G., and Zani, F., J. Inorg. Biochem., 1995, vol. 57, p. 43. https://doi.org/10.1016/0162-0134(94)00004-T

    Article  CAS  PubMed  Google Scholar 

  61. El-Sherif, A.A., Fetoh, A., Abdulhamed, Y.Kh., and Abu El-Reash, G.M., Inorg. Chim. Acta., 2018, vol. 480, p. 1. https://doi.org/10.1016/j.ica.2018.04.038

    Article  CAS  Google Scholar 

  62. Vogel, A.I., Vogel’s Text Book of Quantitative Chemical Analysis, 5 ed., London: Longmans, 1989.

  63. Stylianakis, S., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G.B., Padalko, E., Neyts, J., and Clerq, D.E., Med. Chem. Lett., 2003, vol. 13, p. 1699. https://doi.org/10.1016/s0960-894x(03)00231-2

    Article  CAS  Google Scholar 

  64. Delley, B., Int. J. Quantum Chem., 1998, vol. 69, p. 423. https://doi.org/10.1002/(SICI)1097-461X

    Article  CAS  Google Scholar 

  65. Delley, B., J. Chem. Phys., 2000, vol. 113, p. 7756. https://doi.org/10.1063/1.1316015

    Article  CAS  Google Scholar 

  66. Kessi, A. and Delley, B., Int. J. Quantum Chem., 1998, vol. 68, p. 135. https://doi.org/10.1063/1.465054

    Article  CAS  Google Scholar 

  67. Hehre, W.J., Radom, L., Schlyer, P.V.R., and Pople, J.A., Ab Initio Molecular Orbital Theory, New York: Wiley, 1986.

  68. Hammer, B., Hansen, L.B., and Nrskov, J.K., Phys. Rev. B. 1999, vol. 59, p. 7413. https://doi.org/10.1103/PhysRevB.59.7413

  69. Matveev, A. Staufer, M., Mayer, M., and Rösch, N., Int. J. Quantum Chem., 1999, vol. 75, p. 863. https://doi.org/10.1002/(SICI)1097-461X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. H. Moustafa or H. A. El-Sayed.

Ethics declarations

No conflict of interest was declared by the authors.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, A.A., Asghar, B.H., Moustafa, A.H. et al. Synthesis, Structural Characterization, Thermogravimetric, and Molecular Modelling of Novel Mn(II), Co(II), and Ni(II) Metal Complexes Derived from New Synthesized 4,6-Diaryl-2-oxonicotinonitrile Ligand. Russ J Gen Chem 91, 2564–2580 (2021). https://doi.org/10.1134/S1070363221120288

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221120288

Keywords:

Navigation