Skip to main content
Log in

High Temperature Mass Spectrometric Study of the TiO2–Al2O3 System

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The results of studying the evaporation and thermodynamic properties of the TiO2–Al2O3 system in the temperature range 2250–2710 K by high-temperature mass spectrometry are presented. The composition of the vapor is identified, the partial pressures of the TiO2, TiO, and Al vapor species over the studied samples in the indicated temperature range are determined. The determined activities of the components and the excess Gibbs energy in the melt of the TiO2–Al2O3 system at 2345 K point to insignificant deviations from ideality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zhao, Y., Xu, H., Zhang, X., Zhu, G., Yan, D., and Yu, A., J. Eur. Ceram. Soc., 2015, vol. 35, no. 13, p. 3761. https://doi.org/10.1016/j.jeurceramsoc.2015.05.017

    Article  CAS  Google Scholar 

  2. Tian, P., Peng, Z., Du, X., Zheng, W., and Yuan, J., Glass Phys. Chem., 2019, vol. 45, no. 3, p. 208. https://doi.org/10.1134/S1087659619030143

    Article  Google Scholar 

  3. Sychev, M.M., Shilova, O.A., Matveichikova, P.V., Khamova, T.V., D’yachenko, S.V., Zhernovoi, A.I., and Kopitsa, G.P., Glass Phys. Chem., 2019, vol. 45, no. 6, p. 513. https://doi.org/10.1134/S1087659619060233

    Article  CAS  Google Scholar 

  4. Shao, H., Liang, K., Zhou, F., Wang, G., and Hu, A., Mater. Res. Bull., 2005, vol. 40, no. 3, p. 499. https://doi.org/10.1016/j.materresbull.2004.11.005

    Article  CAS  Google Scholar 

  5. Zdaniewski, W., J. Mater. Sci., 1973, vol. 8, no. 2, p. 192. https://doi.org/10.1007/BF00550667

    Article  CAS  Google Scholar 

  6. Wange, P., Höche, T., Rüssel, C., and Schnapp, J.D., J. Non-Cryst. Solids, 2002, vol. 298, nos. 2–3, p. 137. https://doi.org/10.1016/S0022-3093(02)00950-X

    Article  CAS  Google Scholar 

  7. Hunger, A., Carl, G., Gebhardt, A., and Rüssel, C., J. Non-Cryst. Solids, 2008, vol. 354, nos. 52–54, p. 5402. https://doi.org/10.1016/j.jnoncrysol.2008.09.001

    Article  CAS  Google Scholar 

  8. Stolyarova, V.L. and Semenov, G.A., Mass Spectrometric Study of the Vaporization of Oxide Systems, Chichester: John Wiley, 1994.

  9. Ilatovskaia, M., Savinykh, G., and Fabrichnaya, O., J. Phase Equilibria Diffus., 2017, vol. 38, no. 3, p. 175. https://doi.org/10.1007/s11669-016-0509-4

    Article  CAS  Google Scholar 

  10. Kim, I.J., J. Ceram. Process. Res., 2010, vol. 11, no. 4, p. 411.

    Google Scholar 

  11. Kaufman, L., Physica. B+C, 1988, vol. 150, nos. 1–2, p. 99. https://doi.org/10.1016/0378-4363(88)90111-8

    Article  CAS  Google Scholar 

  12. Kazenas, E.K. and Tsvetkov, Yu.V., Isparenie oksidov (Evaporation of Oxides), Moscow: Nauka,1997.

  13. Kazenas, E.K. and Tsvetkov, Yu.V., Termodinamika ispareniya oksidov (Thermodynamics of Evaporation of Oxides), Moscow: Izd. LKI, 2008.

  14. Bondar’, V.V., Lopatin, S.I., and Stolyarova, V.L., Inorg. Mater., 2005, vol. 41, no. 4, p. 362. https://doi.org/10.1007/s10789-005-0138-5

    Article  CAS  Google Scholar 

  15. Gilles, P.W., Carlson, K.D., Franzen, H.F., and Wahlbeck, P.G., J. Chem. Phys., 1967, vol. 46, no. 7, p. 2461. https://doi.org/10.1063/1.1841070

    Article  CAS  Google Scholar 

  16. Gilles, P.W., Franzen, H.F., Duane Stone, G., and Wahlbeck, P.G., J. Chem. Phys., 1968, vol. 48, no. 5, p. 1938. https://doi.org/10.1063/1.1668994

    Article  CAS  Google Scholar 

  17. Gilles, P.W., Hampson, P.J., and Wahlbeck, P.G., J. Chem. Phys., 1969, vol. 50, no. 2, p. 989. https://doi.org/10.1063/1.1671100

    Article  Google Scholar 

  18. Hampson, P.J. and Gilles, P.W., J. Chem. Phys., 1971, vol. 55, no. 8, p. 3708. https://doi.org/10.1063/1.1676654

    Article  Google Scholar 

  19. Semenov, G.A., Lopatin, S.I., and Kuligina, L.A., Vestn. SPbGU, Ser. 4 (Physics, Chemistry), 1994, vol. 1, no. 4, p. 46.

    Google Scholar 

  20. Finger, L.W. and Hazen, R.M., J. Appl. Phys., 1978, vol. 49, no. 12, p. 5823. https://doi.org/10.1063/1.324598

    Article  CAS  Google Scholar 

  21. Meagher, E.P. and Lager, G.A., Can. Mineral., 1979, vol. 17, no. 1, p. 77.

    CAS  Google Scholar 

  22. Morosin, B. and Lynch, R.W., Acta Crystallogr. B, 1972, vol. 28, no. 4, p. 1040. https://doi.org/10.1107/S0567740872003681

    Article  CAS  Google Scholar 

  23. Lias, S.G., Bartmess, J.E., Liebman, J.F., Holmes, J.L., Levin, R.D., and Mallard, W.G., J. Phys. Chem. Ref. Data, 1988, vol. 17, no. Suppl. 1, p. 861.

    Google Scholar 

  24. Paule, R.C. and Mandel, J., Pure Appl. Chem., 1972, vol. 31, no. 3, p. 371. https://doi.org/10.1351/pac197231030371

    Article  Google Scholar 

  25. Mann, J.B., J. Chem. Phys., 1967, vol. 46, no. 5, p. 1646. https://doi.org/10.1063/1.1840917

    Article  CAS  Google Scholar 

  26. Drowart, J., Chatillon, C., Hastie, J., and Bonnell, D., Pure Appl. Chem., 2005, vol. 77, no. 4, p. 683. https://doi.org/10.1351/pac200577040683

    Article  CAS  Google Scholar 

  27. Sidorov, L.N. and Shol’ts, V.B., Int. J. Mass Spectrom. Ion. Phys., 1972, vol. 8, no. 5, p. 437. https://doi.org/10.1016/0020-7381(72)80014-7

    Article  CAS  Google Scholar 

  28. Redlich, O. and Kister, A.T., Ind. Eng. Chem., 1948, vol. 40, no. 2, p. 345. https://doi.org/10.1021/ie50458a036

    Article  Google Scholar 

  29. Termicheskie konstanty veshchestv (Thermal Constants of Substances), Glushko, V.P., Ed., Moscow: Nauka, 1978–1982.

  30. Barin, I., Thermochemical Data of Pure Substances, Weinheim: VCH Verlagsgesellschaft mbH, 1995.

  31. Babushkin, V.I., Matveev, G.M., and Mchedlov-Petrosyan, O.P., Termodinamika silikatov (Thermodynamics of Silicates), Moscow: Stroiizdat, 1986.

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Cryogenic Department of the Research Park of St. Petersburg State University for providing liquid nitrogen.

Funding

This work was financially supported by the Russian Foundation for Basic Research and the Science Committee of the Ministry of Education, Science, Culture and Sports of the Republic of Armenia (project no. 20-53-05013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Stolyarova.

Ethics declarations

V.L. Stolyarova and S.I. Lopatin are members of the editorial board of the Journal of General Chemistry. No conflict of interest was declared by the other authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 10, pp. 1558–1567 https://doi.org/10.31857/S0044460X21100115.

To the 90th Anniversary of A.V. Suvorov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolyarova, V.L., Vorozhtcov, V.A., Shemchuk, D.V. et al. High Temperature Mass Spectrometric Study of the TiO2–Al2O3 System. Russ J Gen Chem 91, 1999–2007 (2021). https://doi.org/10.1134/S107036322110011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036322110011X

Keywords:

Navigation