Skip to main content
Log in

Vaporization in the Al2O3–MgO system

  • Published:
Inorganic Materials Aims and scope

Abstract

The pseudobinary system Al2O3–MgO has been studied in the temperature range 1750–2100 K by the Knudsen effusion method in combination with mass spectrometric analysis of the vapor phase. Over the entire composition range, except for the 100 mol % Al2O3 boundary, the vapor phase over the system consists of three species: Mg, O2, and O. The partial pressures obtained have been used to construct a p–x section through the Al2O3–MgO phase diagram at 1900 K. The standard enthalpy of formation of the MgAl2O4 spinel at 298 K has been determined by third-law calculations:–2301.61 ± 11.00 kJ/mol. We have derived equations for the temperature dependences of the partial pressures of the vapor species over the Al2O3–MgO system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris, D.C., History of development of polycrystalline optical spinel in the US, Window and Dome Technologies and Materials IX(Orlando 2005), Proc. SPIE, 2005, vol. 5786, pp. 1–22.

    CAS  Google Scholar 

  2. Salmones, J., Galicia, J.A., Wang, J.A., Valenzuela, M.A., and Aguilar-Ris, G., Synthesis and characterization of nanocrystallite MgAl2O4 spinels, J. Mater. Sci. Lett., 2000, vol. 19, no. 12, pp. 1033–1037.

    Article  CAS  Google Scholar 

  3. Li, W.-Z., Kovarik, L., Mei, D., Liu, J., Wang, Y., and Peden, Ch.H.F., Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres, Nat. Commun., 2013, vol. 4, no. 2481, pp. 1–8.

    Google Scholar 

  4. Djenadic, R., Botros, M., and Hahn, H., Is Li-doped MgAl2O4 a potential solid electrolyte for an all-spinel Li-ion battery?, Solid State Ionics, 2016, vol. 287, pp. 71–76.

    Article  CAS  Google Scholar 

  5. Wiglusz, R.J., Boulon, G., Guyot, Y., Cuzik, M., Hreniak, D., and Strek, W., Structural and spectroscopic properties of Yb3+-doped MgAl2O4 nanocrystalline spinel, Dalton Trans., 2014, vol. 43, no. 21, pp. 7752–7759.

    Article  CAS  Google Scholar 

  6. Ganesh, I., A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications, Int. Mater. Rev., 2013, vol. 58, no. 2, pp. 63–112.

    Article  CAS  Google Scholar 

  7. Liu, J., Lv, X., Li, J., and Liu, Y., Synthesis of moltenelectrolyte corrosion resistant MgAl2O4–MgAlON sidewall materials by pressureless sintering, J. Alloys Compd., 2016, vol. 687, pp. 623–629.

    Article  CAS  Google Scholar 

  8. Raj, S.S., Mishra, D.R., Soni, A., Grover, V., Polymeris, G.S., Muthe, K.P., Jha, S.K., and Tyagi, A.K., TL and OSL studies of carbon doped magnesium aluminate (MgAl2O4:C), Radiat. Phys. Chem., 2016, vol. 127, pp. 78–84.

    Article  CAS  Google Scholar 

  9. Kazenas, E.K. and Tsvetkov, Yu.V., Isparenie oksidov (Vaporization of Oxides), Moscow: Nauka, 1997.

    Google Scholar 

  10. Sasamoto, T., Hara, H., and Sata, T., Mass-spectrometric study of the vaporization of magnesium oxide from magnesium aluminate spinel, Bull. Chem. Soc. Jpn., 1981, vol. 54, pp. 3327–3333.

  11. Chase, M.W.J., NIST–JANAF thermochemical tables, J. Phys. Chem. Ref. Data, 1998, monograph 9.

    Google Scholar 

  12. Glushko, V.P., Termicheskie konstanty veshchestv: Spravochnik (Thermal Constants of Substances: A Handbook), Moscow: VINITI,1979, issue IX.

    Google Scholar 

  13. Zienert, T. and Fabrichnaya, O., Thermodynamic assessment and experiments in the system MgO–Al2O3, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2013, vol. 40, pp. 1–9.

    Article  CAS  Google Scholar 

  14. Navrotsky, A. and Kleppa, O.J., Thermodynamics of formation of simple spinels, J. Inorg. Nucl. Chem., 1968, vol. 30, no. 2, pp. 479–498.

    Article  CAS  Google Scholar 

  15. Gribchenkova, N.A., Steblevsky, A.V., and Alikhanyan, A.S., Vaporization thermodynamics of the ZnO–SnO2 system, J. Chem. Thermodyn., 2014, vol. 70, pp. 203–206.

    Article  CAS  Google Scholar 

  16. Mori, T., Solubility of Al2O3 in MgO, J. Ceram. Soc. Jpn., 1981, vol. 90, no. 1045, pp. 551–552.

    Google Scholar 

  17. Drowart, J., De Maria, G., and Inghram, M.G., Thermodynamic study of Al2O3 using a mass spectrometer, J. Chem. Phys., 1958, vol. 29, no. 5, pp. 1015–1021.

    Article  CAS  Google Scholar 

  18. Charlu, T.V., Newton, R.C., and Kleppa, O.J., Enthalpies of formation at 970 K of compounds in the system MgO–Al2O3–SiO2 from high temperature solution calorimetry, Geochim. Cosmochim. Acta, 1975, vol. 39, no. 11, pp. 1487–1497.

    Article  CAS  Google Scholar 

  19. Shearer, J.A. and Kleppa, O.J., The enthalpies of formation of MgAl2O4,MgSiO3,Mg2SiO4 and Al2SiO5 by oxide melt solution calorimetry, J. Inorg. Nucl. Chem., 1973, vol. 35, no. 4, pp. 1073–1078.

    Article  CAS  Google Scholar 

  20. Fujii, K., Nagasaka, T., and Hino, M., Activities of the constituents in spinel solid solution and free energies of formation of MgO, MgO · Al2O3, ISIJ Int., 2000, vol. 40, no. 11, pp. 1059–1066.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Gribchenkova.

Additional information

Original Russian Text © N.A. Gribchenkova, K.G. Smorchkov, A.G. Kolmakov, A.S. Alikhanyan, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 5, pp. 518–523.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribchenkova, N.A., Smorchkov, K.G., Kolmakov, A.G. et al. Vaporization in the Al2O3–MgO system. Inorg Mater 53, 514–518 (2017). https://doi.org/10.1134/S0020168517050077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517050077

Keywords

Navigation