Skip to main content
Log in

Strength of Intramolecular Hydrogen Bonding in 2-Biphenylmethanol and 4-Biphenylmethanol

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The absolute vapor pressures over the solid and liquid 2-biphenylmethanol and 4-biphenylmethanol were measured using the transpiration method. The standard molar enthalpies of vaporization/sublimation were derived from the temperature dependence of vapor pressures. The standard molar enthalpy of fusion of 2-biphenylmethanol was measured using DSC. The available data on solid-gas, liquid-gas and solid-liquid phase transitions available in the literature have been collected, combined with own experimental results and evaluated using the structure-property relationships and quantum-chemical calculations. The high-level G3MP2 and G4 quantum-chemical methods were used to establish consistency of the experimental and theoretical results. Conformational analysis of 2-biphenylmethanol showed the possible presence of a hydrogen bond between the hydroxyl group and the aromatic ring. The strength of the intramolecular hydrogen bonding in 2-biphenylmethanol and 4-biphenylmethanol was assessed from thermochemistry and quantum-chemical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Castellano, R., Molecules, 2014, vol. 19, pp. 15783– 15785. https://doi.org/10.3390/molecules191015783

  2. Varfolomeeva, V.V., Terent’ev, V.A., Zh. Obshch. Khim., 1998, vol. 68, no. 12. p. 1999.

  3. Babkov, L., Baran, J., Davydova, N., and Trukhachev, S., J. Mol. Struct., 2004, vol. 700, pp. 55–59. https://doi.org/10.1016/j.molstruc.2003.12.050

  4. Varfolomeev, M.A., Abaidullina, D.I., Solomonov, B.N., Verevkin, S.P., and Emel’yanenko, V.N., J. Phys. Chem. B., 2010, vol. 114, pp. 16503–16516. https://doi.org/10.1021/jp108459r

  5. Verevkin, S.P., Sazonova, A.Y., Emel’yanenko, V.N., Zaitsau, D.H., Varfolomeev, M.A., Solomonov, B.N., and Zherikova, K.V., J. Chem. Eng. Data., 2015, vol. 60, pp. 89–103. https://doi.org/10.1021/je500784s

  6. Emel’yanenko, V.N. and Verevkin, S.P., J. Chem. Thermodyn., 2015, vol. 85, pp. 111–119. https://doi.org/10.1016/j.jct.2015.01.014

  7. Emel’yanenko, V.N., Zaitsau, D.H., Shoifet, E., Meurer, F., Verevkin, S.P., Schick, C., and Held, C., J. Phys. Chem. A., 2015, vol. 119, pp. 9680–9691. https://doi.org/10.1021/acs.jpca.5b04753

  8. Curtiss, L.A., Redfern, P.C., Raghavachari, K., Rassolov, V., and Pople, J.A., J. Chem. Phys., 1999, vol. 110, pp. 4703–4709. https://doi.org/10.1063/1.478385

  9. Curtiss, L.A., Redfern, P.C., and Raghavachari, K., J. Chem. Phys., 2007, vol. 126, p. 084108. https://doi.org/10.1063/1.2436888

  10. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, M.C.X., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, D.J.F.B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., and Hada, M., Gaussian 16, Revision C.01 Gaussian, Inc., Wallingford CT, 2016.

  11. Pinto, S.S., Bernardes, C.E.S., Diogo, H.P., and Minas da Piedade, M.E., J. Chem. Thermodyn., 2007, vol. 39, pp. 1384–1391. https://doi.org/10.1016/j.jct.2007.03.002

  12. Acree, W., Chickos, J.S., J. Phys. Chem. Ref. Data, 2016, vol. 45, p. 033101. https://doi.org/10.1063/1.4948363

  13. Chickos, J.S., Hosseini, S., Hesse, D.G., and Liebman, J.F., Struct. Chem., 1993, vol. 4, pp. 271–278. https://doi.org/10.1007/BF00673701

  14. Nazmutdinov, A.G., Nesterov, I.A., Nazmutdinov, T.A., Nesterova, T.N., Tarazanov, S.V., Vostrikov, S.V., Pashchenko, L.L., Miroshnichenko, E.A., and Verevkin, S.P., Fluid Phase Equilib., 2012, vol. 335, pp. 88–98. https://doi.org/10.1016/j.fluid.2012.08.020

  15. Chirico, R.D., Hossenloop, I.A., Nguyen, A., Strube, M.M., and Steele, W.V., NIPER Report, United States, 1987, p. 247.

  16. Tkachenko, E.S., PhD Thesis, Moscow, 2011.

  17. Gobble, C., Chickos, J., and Verevkin, S.P., J. Chem. Eng. Data., 2014, vol. 59, pp. 1353–1365. https://doi.org/10.1021/je500110d

  18. Diogo, H.P., Pinto, S.S., and Ramos, J.J.M., J. Therm. Anal. Calorim., 2006, vol. 83, pp. 361–366. https://doi.org/10.1007/s10973-005-7275-6

  19. Baran, J., Davydova, N.A., Drozd, M., and Pietraszko, A., J. Phys. Condens. Matter., 2006, vol. 18, pp. 5695–5702. https://doi.org/10.1088/0953-8984/18/24/010

  20. Zaitseva, K.V., Emel’yanenko, V.N., Agapito, F., Pimerzin, A.A., Varfolomeev, M.A., and Verevkin, S.P., J. Chem. Thermodyn., 2015, vol. 91, pp. 186–193. https://doi.org/10.1016/j.jct.2015.07.025

  21. Emel’yanenko, V.N., Zaitseva, K.V., Agapito, F., Martinho Simões, J.A., and Verevkin, S.P., J. Chem. Thermodyn., 2015, vol. 85, pp. 155–162. https://doi.org/10.1016/j.jct.2015.02.001

  22. Zaitsau, D.H., Emel’yanenko, V.N., Pimerzin, A.A., and Verevkin, S.P., J. Chem. Thermodyn., 2018, vol. 122, pp. 1–12. https://doi.org/10.1016/j.jct.2018.02.025

  23. Verevkin, S.P., Emel’yanenko, V.N., Notario, R., Roux, M.V., Chickos, J.S., and Liebman, J.F., J. Phys. Chem. Lett., 2012, vol. 3, pp. 3454–3459. https://doi.org/10.1021/jz301524c

  24. Wheeler, S.E., Houk, K.N., Schleyer, P.V.R., and Allen, W.D., J. Am. Chem. Soc., 2009, vol. 131, pp. 2547–2560. https://doi.org/10.1021/ja805843n

  25. Verevkin, S.P., Emel’yanenko, V.N., Pimerzin, A.A., and Vishnevskaya, E.E., J. Phys. Chem. A., 2011, vol. 115, pp., 1992–2004. https://doi.org/10.1021/jp1090526

  26. Verevkin, S.P. and Vasiltsova, T.V., J. Chem. Eng. Data, 2004, vol. 49, pp. 1717–1723. https://doi.org/10.1021/je049823k

  27. Roux, M.V., Temprado, M., Chickos, J.S., and Nagano, Y., J. Phys. Chem. Ref. Data, 2008, vol. 37, pp. 1855–1996. https://doi.org/10.1063/1.2955570

  28. Pimentel, G.C. and McClellan, A.L., Annu. Rev. Phys. Chem., 1971, vol. 22, pp. 347–385. https://doi.org/10.1146/annurev.pc.22.100171.002023

  29. Verevkin, S.P., Zaitsau, D.H., Emel’yanenko, V.N., and Zhabina, A.A., Fluid Phase Equilib., 2015, vol. 397, pp. 87–94. https://doi.org/10.1016/j.fluid.2015.03.038

Download references

Funding

SPV gratefully acknowledges financial support from the Government of Russian Federation (decree no. 220 of April 9, 2010), agreement no. 14.Z50.31.0038.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Samarov or S. P. Verevkin.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 10, pp. 1499–1510 https://doi.org/10.31857/S0044460X21100048.

To the 90th Anniversary of A.V. Suvorov

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samarov, A.A., Verevkin, S.P. Strength of Intramolecular Hydrogen Bonding in 2-Biphenylmethanol and 4-Biphenylmethanol. Russ J Gen Chem 91, 1946–1956 (2021). https://doi.org/10.1134/S1070363221100042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221100042

Keywords:

Navigation