Skip to main content
Log in

New Azepine-Furan Spirocyclic Structures in the Reaction of 4-Aroyl-1,2-dihydrobenzo[d]azepines and 2-Aroyl-4,5-dihydrophenanthreno[1,2-d]azepine with Formaldehyde

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

4-Aroyl-1,2-dihydrobenzo[d]azepines, as well as their phenanthro[1,2-d]azepine keto analogs, under the action of formaldehyde in the presence of acid-base catalysts, can undergo diastereoselective transformation into spirocyclic systems, containing two spiro-fused hetero rings – tetrahydroazepine and bifunctionalized tetrahydrofuran. This transformation is provided by a combination of azepine-azepine recyclization of substrates followed by spirocyclization of its products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Scheme

Similar content being viewed by others

Notes

  1. The numbers with one mark indicate the positions in the tetrahydrofuran substituent (in compounds 2a, 2b) or azepine ring (in compounds 2c2f, 4a, 4b), with two marks (hereinafter)—in the aryl substituent.

REFERENCES

  1. Weinstock, J., Ladd, D.L., Wilson, J.W., Brush, C.K., Yim, N.C.F., Gallagher, C.Jr., McCarthy, M.E., Silvestri, J., Sarau, H.M., Flaim, K.E., Ackerman, D.M., Setler, P.E., Tobia, A.J., and Hahn, R.A., J. Med. Chem., 1986, vol. 29, no. 11, p. 2315. https://doi.org/10.1021/jm00161a029

    Article  CAS  PubMed  Google Scholar 

  2. Van Der Niepen, P. and Dupont, A.G., in Antihypertensive Drugs Today (Progress in Hypertension), Saito, H. and Minami, M., Eds., Tokyo: Utrecht, 1992, vol. 2, p. 207.

  3. Smit, B., Gilson III, C.A, Schultz, J., and Smith, J., US Patent 7704993 B2, 2010.

  4. Forbes, I.T., Gribble, A.D., Lightfoot, A., Payne, A.H., and Walker, G., WO Patent 2003099792 A1, 2003.

  5. Hadley, M.S., Lightfoot, A.P., Macdonald, G.J., and Stemp, G., WO Patent 2002040471 A2, 2002.

  6. Forbes, I.T., Garzya, V., Gribble, A.D., Lightfoot, A., Payne, A.H., and Walker, G., US Patent 7504392 B2, 2009.

  7. Kawase, M., Saito, S., and Motohashi, N., Int. J. Antimicrob. Agents, 2000, vol. 14, p. 193. https://doi.org/10.1016/S0924-8579(99)00155-7

    Article  CAS  PubMed  Google Scholar 

  8. Jiang, B., Wang, F., Yang, S., Fang, P., Deng, Z.F., Xiao, J.L., Hu, Z.L., and Chen, J.G., Int. J. Neuropsychopharmacol., 2015, vol. 18, no. 6, p. 1. https://doi.org/10.1093/ijnp/pyu096

    Article  CAS  Google Scholar 

  9. Plunkett, A.O., Nat. Prod. Rep., 1994, vol. 11, no. 6, p. 581. https://doi.org/10.1039/NP9941100581

    Article  CAS  PubMed  Google Scholar 

  10. Kaltenegger, E., Brem, B., Mereiter, K., Kalchhauser, H., Kählig, H.H., Hoferc, O., Vajrodaya, S., and Greger, H., Phytochemistry, 2003, vol. 63, p. 803. https://doi.org/10.1016/S0031-9422(03)00332-7

    Article  CAS  PubMed  Google Scholar 

  11. The Total Synthesis of Natural Products, ApSimon, J., Ed., New York: Wiley, 1977, vol. 3, p. 243. https://doi.org/10.1002/pol.1978.130160312

  12. Dictionary of Alkaloids, Buckingham, J., Baggaley, K.H., Roberts, A.D., and Szabo, L.F., Eds., Boca Raton: CRC-Press, 2010, 2291 p.

  13. Pilli, R.A., Rosso, G.B., Da Conceiҫâo, M., and De Oliveira, F., in The Alkaloids: Chemistry and Physiology, Cordell, G.A., Ed., Amsterdam: Elsevier, Academic Press, 2005, vol. 62, p. 77.

  14. DrugBank. https://www.drugbank.ca

  15. Kartsev, V.G., Zubenko, A.A., Morkovnik, A.S., and Divaeva, L.N., Tetrahedron Lett., 2015, vol. 56, p. 6988. https://doi.org/10.1016/j.tetlet.2015.10.103

    Article  CAS  Google Scholar 

  16. Zubenko, A.A., Kartsev, V.G., Morkovnik, A.S., Divaeva, L.N., Alexeenko, D.V., Borodkin, G.S., Suponitsky, K.Y., and Klimenko, A.I., Tetrahedron Lett., 2017, vol. 58, p. 1233. https://doi.org/10.1016/j.tetlet.2017.02.036

    Article  CAS  Google Scholar 

  17. Zubenko, A.A., Divaeva, L.N., Morkovnik, A.S., Kartsev, V.G., Drobin, Y.D., Serbinovskaya, N.M., Fetisov, L.N., Bodryakov, A.N., Bodryakova, M.A., and Lyashenko, L.A., Russ. J. Bioorg. Chem., 2017, vol. 43, p. 311. https://doi.org/10.1134/S1068162017030189

    Article  CAS  Google Scholar 

  18. Zubenko, A.A., Morkovnik, A.S., Divaeva, L.N., Kartsev, V.G., Suponitsky, K.Y., and Klimenko, A.I., 2018, vol. 28, p. 320. https://doi.org/10.1016/j.mencom.2018.05.031

  19. Zubenko, A.A., Morkovnik, A.S., Divaeva, L.N., Kartsev, V.G., Kuzmina, L.G., Borodkin, G.S., and Klimenko, A.I., Mendeleev Commun., 2018, vol. 28, p. 58. https://doi.org/10.1016/j.mencom.2018.01.019

    Article  CAS  Google Scholar 

  20. Zubenko, A.A., Morkovnik, A.S., Divaeva, L.N., Kartsev, V.G., Anisimov, A.A., and Suponitsky, K.Y., Russ. J. Org. Chem., 2019, vol. 55, no. 1, p. 74. https://doi.org/10.1134/S1070428019010081

    Article  CAS  Google Scholar 

  21. Zubenko, A.A., Morkovnik, A.S., Divaeva, L.N., Demidov, O.P., Sochnev, V.S., Borodkina, I.G., Drobin, Y.D., and Spasov, A.A., Mendeleev Commun., 2020, vol. 30, p. 28. https://doi.org/10.1016/j.mencom.2020.01.009

    Article  CAS  Google Scholar 

  22. Gel’man, N.E., Terent’eva, E.A., Shanina, T.M., and Kiparenko, L.M., Metody kolichestvennogo organicheskogo elementnogo analiza (Methods for Quantitative Organic Elemental Analysis), Moscow: Khimiya, 1987.

  23. CrysAlisPro, version 1.171.38.41, Rigaku Oxford Diffraction, Oxford, 2015. https://www.rigaku.com/en/products/smc/crysalis

  24. Sheldrick, G.M., Acta Crystallogr. (A), 2015, vol. 71, no. 3. https://doi.org/10.1107/S2053273314026370

  25. Sheldrick, G.M., Acta Crystallogr. (C), 2015, vol. 71, no. 3. https://doi.org/10.1107/S2053229614024218

  26. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Crystallogr., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

Download references

Funding

The synthesis and spectroscopic studies of spirocyclic compounds 2a2e were performed at the Scientific Research Institute of Physical and Organic Chemistry of the Southern Federal University with financial support from the Russian Foundation for Basic Research (grant no. 20-03-00657/20). The synthesis of compounds 1f, 2f, 4a, and 4b was carried out at the North Caucasian Zonal Veterinary Institute as part of the Program of Fundamental Scientific Research of the State Academies of Sciences for 2019–2021 (topic no. 0710-2019-0044). Spectroscopic and X-ray structural studies were carried out using the equipment of the Collective Use Centers of the South and North Caucasus Federal Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Divaeva.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 5, pp. 703–710 https://doi.org/10.31857/S0044460X21050061.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubenko, A.A., Morkovnik, A.S., Divaeva, L.N. et al. New Azepine-Furan Spirocyclic Structures in the Reaction of 4-Aroyl-1,2-dihydrobenzo[d]azepines and 2-Aroyl-4,5-dihydrophenanthreno[1,2-d]azepine with Formaldehyde. Russ J Gen Chem 91, 792–798 (2021). https://doi.org/10.1134/S1070363221050066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221050066

Keywords:

Navigation