Skip to main content
Log in

Electrochemical Synthesis of Porous Copper(II) Oxide Microparticles with Rectangular Hexagonal Morphology

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Microparticles of CuO were obtained by thermal decomposition of copper(II) oxalate synthesized by pulse electrolysis of an oxalic acid solution with a sacrificial copper anode. Scanning electron microscopy showed that the particles are rectangular hexagon-shaped with a size of 0.2–5 µm and form complex irregular aggregates with a porous structure. The use of the water–dimethylformamide solvents with a volume ratio 1 : 1 is optimal to achieve the desired morphology of the product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Anu Prathap, M.U., Kaur, B., and Srivastava, R., J. Colloid Interface Sci., 2012, vol. 370, p. 144. https://doi.org/10.1016/j.jcis.2011.12.074

    Article  CAS  Google Scholar 

  2. Cheng, L., Shao, M., Chen, D., and Zhang, Y., Mater. Res. Bull., 2010, vol. 45, p. 235. https://doi.org/10.1016/j.materresbull.2009.08.001

    Article  CAS  Google Scholar 

  3. Wan, M., Jin, D., Feng, R., Si, L., Gao, M., and Yue, L., Inorg. Chem. Commun., 2011, vol. 14, p. 38. https://doi.org/10.1016/j.inoche.2010.09.025

    Article  CAS  Google Scholar 

  4. Siddiqui, H., Qureshi, M.S., and Haque, F.Z., Optik., 2016, vol. 127, p. 2740. https://doi.org/10.1016/j.ijleo.2015.11.220

    Article  CAS  Google Scholar 

  5. Ayodhya, D. and Veerabhadram, G., Chem. Data Collect., 2019, vol. 23, p. 1. https://doi.org/10.1016/j.cdc.2019.100259

    Article  CAS  Google Scholar 

  6. Feng, L., Xuan, Zh., Bai, Y., Zhao, H., Li, L., Chen, Y., Yang, X., Su, Ch., Guo, J., and Chen, X., J. Alloys Compd., 2014, vol. 600, p. 162. https://doi.org/10.1016/j.jallcom.2014.02.132

    Article  CAS  Google Scholar 

  7. Kim, K.H., Kanamaru, Y., Abe, Y., Kawamura, M., and Kiba, T., Mater. Lett., 2020, vol. 265, p. 1. https://doi.org/10.1016/j.matlet.2020.127424

    Article  CAS  Google Scholar 

  8. Rao, M.P., Ponnusamy, V.K., Wu, J.J., Asiri, A.M., and Anandan, S., J. Environ. Chem. Eng., 2018, vol. 6, p. 6059. https://doi.org/10.1016/j.jece.2018.09.041

    Article  CAS  Google Scholar 

  9. Zhang, X., Zhang, D., Ni, X., and Zheng, H., SolidState Electron., 2008, vol. 52, p. 245. https://doi.org/10.1016/j.sse.2007.08.009

    Article  CAS  Google Scholar 

  10. Shamsipur, M., Roushani, M., and Pourmortazavi, S.M., Mater. Res. Bull., 2013, vol. 48, p. 1275. https://doi.org/10.1016/j.materresbull.2012.12.032

    Article  CAS  Google Scholar 

  11. Das, S. and Srivastava, V.Ch., Mater. Lett., 2015, vol. 150, p. 130. https://doi.org/10.1016/j.matlet.2015.03.018

    Article  CAS  Google Scholar 

  12. Liu, Y., Shu, Y., Sun, B., Zeng, X., Zhu, J., Yi, J., and He, J., Ceram. Int., 2019, vol. 45, p. 19068. https://doi.org/10.1016/j.ceramint.2019.06.151

    Article  CAS  Google Scholar 

  13. Mashentseva, A.A., Kozlovskiy, A.L., and Zdorovets, M.V., Russ. J. Gen. Chem., 2019, vol. 89, no. 5, p. 988. https://doi.org/10.1134/S1070363219050189

    Article  CAS  Google Scholar 

  14. Rodríguez, A. and García-Vázquez, J.A., Coord. Chem. Rev., 2015, vol. 303, p. 42. https://doi.org/10.1016/j.ccr.2015.05.006

    Article  CAS  Google Scholar 

  15. Sargsyan, S.H., Sargsyan, T.S., Agadjanyan, I.G., Khizantsyan, K.M., Sargsyan, and A.S., Margaryan, K.S., Russ. J. Gen. Chem., 2020, vol. 90, no. 6, p. 906. https://doi.org/10.31857/S0044460X20060108

    Article  Google Scholar 

  16. Cao, Y., Wang, Y.-j., Zhou, K.-g., and Bi, Zh., Trans. Nonferrous Met. Soc. China, 2010, vol. 20, p. s216. https://doi.org/10.1016/S1003-6326(10)60042-8

  17. Zelenov, V.I., Shabanova, I.V., and Tsokur, M.N., Russ. J. Gen. Chem., 2008, vol. 78, no. 11, p. 2166. https://doi.org/10.1134/S1070363208110352

    Article  CAS  Google Scholar 

  18. GOST 10896-78. Ionites. Preparation for the test. Moscow: IPK Publishing House of Standards, 1998.

  19. RF Patent 2493161, 2013; Byull. Izobret., 2013, no. 26.

Download references

ACKNOWLEDGMENTS

The work was carried out using the equipment of the Scientific and Educational Center “Diagnostics of the structure and properties of nanomaterials” of the Kuban State University Center for Collective Use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Andriychenko.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 4, pp. 638–642 https://doi.org/10.31857/S0044460X2104020X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andriychenko, E.O., Zelenov, V.I., Bovyka, V.E. et al. Electrochemical Synthesis of Porous Copper(II) Oxide Microparticles with Rectangular Hexagonal Morphology. Russ J Gen Chem 91, 707–710 (2021). https://doi.org/10.1134/S1070363221040204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221040204

Keywords:

Navigation