Skip to main content
Log in

Recent Studies on Applications of Schiff Bases and Their Complexes in Atmospheric Carbon Dioxide Capture

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Over many decades, global warming induced by the rising level of atmospheric carbon dioxide appeared to be the point of high concern. Energy demand in running the modern civilisation is mainly fulfilled by combustion of fossil fuels, which, in turn, produces carbon dioxide as a waste. In this respect, capture and fixation of CO2 waste into different value-added products like carbonates, can make the potential shift in the view of carbon dioxide emission. For coupling carbon dioxide and epoxide with formation of carbonates, different metal halides, ionic liquids, ternary alkyl ammonium or phosphonium salts as well as metal complexes are used as active catalysts. This paper presents an overview on Schiff bases and their metal complexes used as catalysts in fixation of CO2 and, hence, its removal from atmosphere within recent twenty years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Scheme 3.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Scheme 4.
Scheme 5.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Ozdemir, M., Inorg. Chim. Acta, 2014, vol. 421, p. 1. https://doi.org/10.1016/j.ica.2014.05.024

    Article  CAS  Google Scholar 

  2. Sarkar, S.K., Jana, M.S., Mondal, T.K., and Sinha, C., Appl. Organomet. Chem., 2014, vol. 28, p. 641. https://doi.org/10.1002/aoc.3174

  3. Shoair, A.G.F., J. Coord. Chem., 2012, vol. 65, p. 3511. https://doi.org/10.1080/00958972.2012.719079

  4. Shen, Y.M., Duan, W.L., and Shi, M., Eur. J. Org. Chem., 2004, vol. 14, p. 3080. https://doi.org/10.1002/ejoc.200400083

  5. Wang, W., Zhou, M., and Yuan, D., J. Mater. Chem. A, 2017, vol. 5, p. 1334. https://doi.org/10.1039/C6TA09234A

    Article  CAS  Google Scholar 

  6. Aresta, M., Dibenedetto, A., Catal. Today, 2004, vol. 98, p. 455. https://doi.org/10.1016/j.cattod.2004.09.001

    Article  CAS  Google Scholar 

  7. Melendez, J., North, M., and Pasquale, R., Eur. J. Inorg. Chem., 2007, vol. 2007, no. 21, p. 3323. https://doi.org/10.1002/ejic.200700521

    Article  CAS  Google Scholar 

  8. Mc Linden, M.O., Lemmon, E.W., and Jacobsen, R.T., Int. J. Refrig., 1998, vol. 21, issue 4, p. 322. https://doi.org/10.1016/S0140-7007(97)00081-9

    Article  CAS  Google Scholar 

  9. Fukuda, S., Ohmi, T., and Sugawa, S., Semiconductor Manufacturing, 2006, p. 243. https://doi.org/10.1109/ISSM.2006.4493073

  10. Jessop, P.G., Ikarika, T., and Noyori, R., Nature, 1994, vol. 368, p. 231.

    Article  CAS  Google Scholar 

  11. Ramsey, E., Sun, Q., Zhang, Z., Zhang, C., and Gou, W., J. Environ. Sci., 2009, vol. 21, p. 720. https://doi.org/10.1016/S1001-0742(08)62330-X

    Article  CAS  Google Scholar 

  12. Sakakura, T., Choi, J., and Yasuda, H., Chem. Rev., 2007, vol. 107, p. 2365. https://doi.org/10.1021/cr068357u

    Article  CAS  PubMed  Google Scholar 

  13. North, M., Pasquale, R., and Young, C., Green Chem., 2010, vol. 12, p. 1514. https://doi.org/10.1039/c0gc00065e

    Article  CAS  Google Scholar 

  14. Ducat, D.C. and Silver, P.A., Curr. Opin. Chem. Biol., 2012, vol. 16, p. 337. https://doi.org/10.1016/j.cbpa.2012.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stitt, M., Lunn, J., and Usadel, B., Plant J., 2010, vol. 61, p. 1067. https://doi.org/10.1111/j.1365-313X.2010.04142.x

    Article  CAS  PubMed  Google Scholar 

  16. Herter, S., Farfsing, J., Gad’On, N., Rieder, C., Eisenreich, W., Bacher, A., and Fuchs, G., J. Bacteriol., 2001, vol. 183, p. 4305. https://doi.org/10.1128/JB.183.14.4305-4316.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Strauss, G. and Fuchs, G., Eur. J. Biochem., 1993, vol. 215, p. 633. https://doi.org/10.1111/j.1432-1033.1993.tb18074.x

    Article  CAS  PubMed  Google Scholar 

  18. Gong, F., Cai, Z., and Li, Y., Science China Life Sciences, 2016, vol. 59, no. 11, p. 1106. https://doi.org/10.1007/s11427-016-0304-2

    Article  CAS  PubMed  Google Scholar 

  19. Ragsdale, S.W., Biofactor., 1997, vol. 6, vol. 3. p. 321. https://doi.org/10.1002/biof.5520060303

    Article  Google Scholar 

  20. Kim, B.W., Chang, H.N., Kim, I.K., and Lee, K.S., Biotech. Bioeng., 1992, vol. 40, p. 583. https://doi.org/10.1002/bit.260400505

    Article  CAS  Google Scholar 

  21. Huber, H., Gallenberger, M., Jahn, U., Eylert, E., Berg, I.A., Kockelkorn, D., Eisenreich, W., and Fuchs, G., PNAS, 2008, vol. 105, no. 22, p. 7851. https://doi.org/10.1073/pnas.0801043105

    Article  PubMed  Google Scholar 

  22. Shaikh, A.G. and Sivaram, S., Chem. Rev., 1996, vol. 96, p. 951. https://doi.org/10.1021/cr950067i

    Article  CAS  PubMed  Google Scholar 

  23. Wu, S., J. Mol. Cat. A: Chem., 2016, vol. 418, p. 1. https://doi.org/10.1016/j.molcata.2016.03.002

    Article  CAS  Google Scholar 

  24. Song, J., Zhang, Z., Hu, S., Wu, T., Jiang, T., and Han, B., Green Chem. 2009, vol. 11, p. 1031. https://doi.org/10.1039/B902550B

  25. Ramidi, P., Munshi, P., Gartia, Y., Pulla, S., Biris, A.S., Paul, A., and Ghosh, A., Chem. Phys. Lett., 2011, vol. 512, p. 273. https://doi.org/10.1016/j.cplett.2011.07.035

    Article  CAS  Google Scholar 

  26. Srivastava, R., Bennur, T.H., and Srinivas, D., J. Mol. Catal. A: Chem., 2005, vol. 226, p. 199. https://doi.org/10.1016/j.molcata.2004.10.034

    Article  CAS  Google Scholar 

  27. Yamaguchi, K., Ebitani, K., Yoshida, T., Yoshida, H., and Kaneda, K., J. Am. Chem. Soc., 1999, vol. 121, p. 4526. https://doi.org/10.1021/ja9902165

    Article  CAS  Google Scholar 

  28. Srivastava, R., Srinivas, D., and Ratnasamy, P., J. Catal., 2005, vol. 233, p. 1. https://doi.org/10.1016/j.jcat.2005.03.023

    Article  CAS  Google Scholar 

  29. Murugan, C., Sharma, S.K., Jasra, R.V., and Bajaj, H.C., Ind. J. Chem. 49A, 2010, p. 288.

  30. Ramin, M., Vegten, N., Grunwaldt, J.D., and Baiker, A., J. Mol. Cat. A, 2006, vol. 258, p. 165. https://doi.org/10.1016/j.molcata.2006.05.041

    Article  CAS  Google Scholar 

  31. Chang, T., Jin, L., and Jing, H., Chem. Cat. Chem., 2009, vol. 1, p. 379. https://doi.org/10.1002/cctc.200900135

    Article  CAS  Google Scholar 

  32. Decortes, A., Castilla, A.M., and Kleij, A.W., Angew. Chem. Int. Ed., 2010, vol. 49, p. 9822. https://doi.org/10.1002/anie.201002087

    Article  CAS  Google Scholar 

  33. Tascl, Z., Kunduracioglu, A., Kani, I., and Cetinkaya, B., Chem. Cat. Chem., 2012, vol. 4, p. 831. https://doi.org/10.1002/cctc.201100430

    Article  CAS  Google Scholar 

  34. Yasuda, H., He, L.N., and Sakakura, T., J. Catal., 2002, vol. 209, p. 547. https://doi.org/10.1006/jcat.2002.3662

    Article  CAS  Google Scholar 

  35. Buchard, A., Kember, M.R., Sandeman, K.G., and Williams, C.K., Chem. Comm., 2011, vol. 47, p. 212. https://doi.org/10.1039/C0CC02205E

    Article  CAS  PubMed  Google Scholar 

  36. Man, M.L., Lam, K.C., Sit, W.N., Ng, S.M., Zhou, Z., Lin, Z., and Lau, C.P., Chem. Eur. J., 2006, vol. 12, p. 1004. https://doi.org/10.1002/chem.200500780

    Article  CAS  PubMed  Google Scholar 

  37. He, T., Wu, J., Zhang, Z., Ding, K., Han, B., Xie, Y., Jiang, T., and Liu, Z., Chem. Eur. J., 2007, vol. 13, p. 6992. https://doi.org/10.1002/chem.200700210

    Article  CAS  PubMed  Google Scholar 

  38. Sun, J., Ren, J., Zhang, S., and Cheng, W., Tetrahedron Lett., 2009, vol. 50, p. 423. https://doi.org/10.1016/j.tetlet.2008.11.034

    Article  CAS  Google Scholar 

  39. Zhao, Y., Tian, J.S., Qi, X.H., Han, Z.N., Zhang, Y.Y., and He, L.N., J. Mol. Cat. A., 2007, vol. 271, p. 284. https://doi.org/10.1016/j.molcata.2007.03.047

    Article  CAS  Google Scholar 

  40. Macias, E.E., Ratnasamy, P., and Carreon, M.A., Catal. Today, 2012, vol. 198, p. 215. https://doi.org/10.1016/j.cattod.2012.03.034

    Article  CAS  Google Scholar 

  41. Carreon, M.A., In. J. Chem. A., 2012, vol. 51, p. 1306.

    Google Scholar 

  42. Zhu, M., Srinivas, D., Bhogeswararao, S., Ratnasamy, P., and Carreon, M.A., Catal. Commun., 2013, vol. 32, p. 36. https://doi.org/10.1016/j.catcom.2012.12.003

    Article  CAS  Google Scholar 

  43. Du, Y., Cai, F., Kong, D. L., and He, L.N., Green Chem., 2005, vol. 7, p. 518. https://doi.org/10.1039/B500074B

    Article  CAS  Google Scholar 

  44. Liang, S., Liu, H., Jiang, T., Song, J., Yang, G., and Han, B., Chem. Commun., 2011, vol. 47, p. 2131. https://doi.org/10.1039/C0CC04829A

    Article  CAS  Google Scholar 

  45. Schiff, H., Ann. Suppl., 1864, vol. 3, p. 343.

    Google Scholar 

  46. Abu-Dief, A.M. and Mohamed, M.A., Beni-Suef University J. Basic Appl. Sci., 2015, vol. 4, p. 119. https://doi.org/10.1016/j.bjbas.2015.05.004

    Article  Google Scholar 

  47. Kitajima, N., Fujisawa, K., Koda, T., Hikichi, S., and Moro-oka, Y., Chem. Commn., 1990, p. 1357. https://doi.org/10.1039/C39900001357

  48. Govindaswamy, P., Sinha, C., and Kollipara, M.R., J. Organomet. Chem., 2005, vol. 690, p. 3465. https://doi.org/10.1016/j.jorganchem.2005.04.042

    Article  CAS  Google Scholar 

  49. Atabey, H., Findik, E., Sari, H., and Ceylan, M., Turk. J. Chem., 2014, vol. 38, p. 109. https://doi.org/10.3906/kim-1303-65

    Article  CAS  Google Scholar 

  50. Robert, L., Paddock, T., and Nguyen, S.B., J. Am. Chem. Soc., 2001, vol. 123, p. 11498. https://doi.org/10.1021/ja0164677

    Article  CAS  Google Scholar 

  51. Shen, Y.M., Duan, W.L., and Shi, M., J. Org. Chem., 2003, vol. 68, p. 1559. https://doi.org/10.1021/jo020191j

    Article  CAS  PubMed  Google Scholar 

  52. Shen, Y.M., Duan, W.L., and Shi, M., Eur. J. Org. Chem., 2004, p. 3080. https://doi.org/10.1002/ejoc.200400083

  53. Bing Lu, X., Zhang, Y., Liang, B., Li, X., and Wang, H., J. Mol. Cat. A: Chem., 2004, vol. 210, p. 31. https://doi.org/10.1016/j.molcata.2003.09.010

    Article  CAS  Google Scholar 

  54. Melendez, J., North, M., and Pasquale, R., Eur. J. Inorg. Chem., 2007, p. 3323. https://doi.org/10.1002/ejic.200700521

  55. Clegg, W., Harrington, R.W., North, M., and Pasquale, R., Chem. Eur. J., 2010, vol. 16, p. 6828. https://doi.org/10.1002/chem.201000030

    Article  CAS  PubMed  Google Scholar 

  56. Darensbourg, D.J. and Frantz, E.B., Inorg. Chem., 2007, vol. 46, p. 5967. https://doi.org/10.1021/ic7003968

    Article  CAS  PubMed  Google Scholar 

  57. Mukherjee, P., Drew, M.G.B., Estrader, M., and Ghosh, A., Inorg. Chem., 2008, vol. 47, p. 7784. https://doi.org/10.1021/ic800786s

    Article  CAS  PubMed  Google Scholar 

  58. Udayakumar, S., Park, S.W., Park, D.W., and Choi, B.S., Catal. Commun., 2008, vol. 9, p. 1563. https://doi.org/10.1016/j.catcom.2008.01.001

    Article  CAS  Google Scholar 

  59. Fan, G.Z., Fujita, S.I., Zou, B., Masahiro, N., Meng, X.C., and Arai, M., Catal. Lett., 2009, vol. 133, p. 280. https://doi.org/10.1007/s10562-009-0189-3

    Article  CAS  Google Scholar 

  60. Fan, G.Z., Wang, Z.G., Zou, B., and Wang, M., Fuel Process. Tech., 2011, vol. 92, p. 1052. https://doi.org/10.1016/j.fuproc.2010.12.031

    Article  CAS  Google Scholar 

  61. Duan, Z., Fang, T., Wang, M., and Fan, G., Adv. Mat. Res., 2012, vol. 549, p. 406.

    CAS  Google Scholar 

  62. Sakamoto, S., Fujinami, T., Nishi, K., Matsumoto, N., Mochida, N., Ishida, T., Sunatsuki, Y., and Re, N., Inorg. Chem., 2013, vol. 52, p. 7218. https://doi.org/10.1021/ic4008312

    Article  CAS  PubMed  Google Scholar 

  63. Luo, R., Zhou, X., Chen, S., Li, Y., Zhou, L., and Ji, H., Green Chem., 2014, vol. 16, p.1496. https://doi.org/10.1039/c3gc42388c

    Article  CAS  Google Scholar 

  64. Dkiz, M., Dspir, E., Aytar, E., Karabuga, S., Aslantaş, M., Çelik, O., and Ulusoy, M., New J. Chem., 2015, vol. 39, p. 7786. https://doi.org/10.1039/C5NJ00571J

    Article  CAS  Google Scholar 

  65. Miao J., Xue, J., Zhu, J., and Liu, K., EPD Congress 2015, TMS (The Minerals, Metals & Materials Society), 2015.

  66. Inoue, S., Koinuma, H., and Tsuruta, T., Polym. J. Sci. Polym. Lett. B, 1969, vol. 7, p. 287.

    Article  CAS  Google Scholar 

  67. Alujaa, L.C., Carrascoa, A.C., Castillaa, J., Regueroa, M., Masdeu-Bultóa, A.M., and Aghmiz, A., J. CO2 Utilization, 2016, vol. 14, p. 10. https://doi.org/10.1016/j.jcou.2016.01.002

    Article  CAS  Google Scholar 

  68. Miao, C.X., Wang, J.Q., Wu, Y., Du, Y., and Nian He, L., Chem Sus Chem., 2008, vol. 1, p. 236. https://doi.org/10.1002/cssc.200700133

    Article  CAS  Google Scholar 

  69. Lang, X.D., Yu, Y.C., and He, L.N., J. Mol. Catal. A: Chem., 2016, vol. 420, p. 208. https://doi.org/10.1016/j.molcata.2016.04.018

    Article  CAS  Google Scholar 

  70. Luo, R., Yang, Z., Zhang, W., Zhou, X., and Ji, H., Science China Chem., 2017. https://doi.org/10.1007/s11426-016-0405-3

  71. Zhang, C., Lu, D., Leng, Y., and Jiang, P., Molecular Catal., 2017, vol. 439, p. 193. https://doi.org/10.1016/j.mcat.2017.07.002

    Article  CAS  Google Scholar 

  72. Nichols, A.W., Chatterjee, S., Sabat, M., and Machan, C.W., Inorg. Chem., 2018, vol. 57, p. 2111. https://doi.org/10.1021/acs.inorgchem.7b02955

    Article  CAS  PubMed  Google Scholar 

  73. Das, A., Goswami, S., Sen, R., and Ghosh, A., Inorg. Chem., 2019, vol. 58, p. 5787. https://doi.org/10.1021/acs.inorgchem.9b00121

    Article  CAS  PubMed  Google Scholar 

  74. Omer, R.M., Al Tikrity, E.T.B., Hiti, G.A., Alotibi, M.F., and Yousif, D.S., Processes, 2020, vol. 8, p. 17. https://doi.org/10.3390/pr8010017

    Article  CAS  Google Scholar 

  75. Liu, C.M., Hao, X., and Zhang, D.Q., Appl. Organomet. Chem., 2020. https://doi.org/10.1002/aoc.5893

  76. Chen, S., Pudukudy, M., Yue, Z., Zhang, H., Zhi, Y., Ni, Y., Shan, S., and Jia, Q., Ind. Eng. Chem. Res., 2019, vol. 58, p. 17255. https://doi.org/10.1021/acs.iecr.9b03331

    Article  CAS  Google Scholar 

  77. Liu, Q., Yang, X., Li, L., Miao, S., Li, Y., Wang, X., Huang, Y., and Zhang, T., Nature Commns., 2017, vol. 8, p. 1407. https://doi.org/10.1038/s41467-017-01673-3

    Article  CAS  Google Scholar 

  78. Ullah, H., Mousavi, B., Younus, H.A., Khattak, Z.A.K., Chaemchuen, S., Suleman, S., and Verpoort, F., Commns. Chem., 2019, vol. 2, p. 42. https://doi.org/10.1038/s42004-019-0139-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debdulal Maity.

Ethics declarations

No conflict of interest was declared by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, D. Recent Studies on Applications of Schiff Bases and Their Complexes in Atmospheric Carbon Dioxide Capture. Russ J Gen Chem 90, 2473–2483 (2020). https://doi.org/10.1134/S1070363220120403

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220120403

Keywords:

Navigation