Skip to main content

Chlorine-Free Heterogeneous Acid Catalysts

  • Chapter
  • First Online:
Chemistry Beyond Chlorine
  • 1453 Accesses

Abstract

Chlorine-containing compounds are highly used as catalysts. AlCl3 is a traditional Lewis acid, whereas HCl is commonly used as Bronsted acid, either pure or in aqueous solution. Nevertheless, these acidic substances can be replaced by solid acid materials, such as zeolites, metal oxides, and clays, among others, all presenting high catalytic activity and yielding significant less hazardous wastes. In addition, many heterogeneous acid catalysts can be reused, contributing to greener and more sustainable processes.

We wish to show in this chapter some application of solid acid catalysts in alkylation, etherification, acetalization/ketalization, esterification, and carbonation reactions to replace chlorinated acidic systems. In contrast, we will show a positive role of chlorinated compounds as water suppressor agent in the carbonation of methanol with CO2 to produce dimethyl carbonate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beach ES, Cui Z, Anastas PT (2009) Green chemistry: a design framework for sustainability. Energy Environ Sci 2:1038–1049

    Article  CAS  Google Scholar 

  2. Szostak R (1989) Molecular sieve: principles of synthesis and identification. Van Nostrand Reinhold, New York

    Google Scholar 

  3. Bidart AM, Borges AP, Nogueira L, Lachter ER, Mota CJA (2001) Iron-exchanged zeolite as effective catalysts for Friedel-Crafts alkylation with alkyl halides. Catal Lett 75:155–157

    Article  CAS  Google Scholar 

  4. Bidart AM, Borges AP, Chagas HC, Nogueira L, Lachter ER, Mota CJA (2006) Mechanistic aspects of Friedel-Crafts alkylation over FeY zeolite. J Braz Chem Soc 17:758–762

    Article  CAS  Google Scholar 

  5. Smit B, Maessen TLM (2008) Towards a molecular understanding of shape selectivity. Nature 451:671–678

    Article  CAS  Google Scholar 

  6. Perego C, Ingallina P (2002) Recent advances in the industrial alkylation of aromatics: new catalysts and new processes. Catal Today 73:3–22

    Article  CAS  Google Scholar 

  7. Corma A, Martinez A (1993) Chemistry, catalysts, and processes for isoparaffin–olefin alkylation: actual situation and future trends. Catal Rev Sci Eng 35:483–570

    Article  CAS  Google Scholar 

  8. Weitkamp J (1999) Isobutane/butene alkylation on solid catalysts. Where do we stand? Catal Today 49:193–199

    Article  CAS  Google Scholar 

  9. Rosenbach N Jr, Mota CJA (2005) Alkylation of isobutane/2-butene over cation-exchanged zeolites. J Braz Chem Soc 16:691–694

    Article  CAS  Google Scholar 

  10. da Silva CXA, Gonçalves VLC, Mota CJA (2009) Water-tolerant zeolite catalyst for the acetalisation of glycerol. Green Chem 11:38–41

    Article  Google Scholar 

  11. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD (2007) From glycerol to value-added products. Angew Chem Int Ed 46:4434–4440

    Article  CAS  Google Scholar 

  12. Zeng Y, Chen X, Shen Y (2008) Commodity chemicals derived from glycerol, an important biorefinery feedstock. Chem Rev 108:5253–5277

    Google Scholar 

  13. Zhou C, Beltramini JN, Fan YX, Lu GQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37:527–549

    Article  Google Scholar 

  14. Mota CJA, da Silva CXA, Gonçalves VL (2009) Glycerochemistry: new products and processes from glycerin of biodiesel production. Quim Nova 32:639–648

    Article  CAS  Google Scholar 

  15. Ozório LP, Pianzolli R, Mota MBS, Mota CJA (2012) Reactivity of Glycerol/acetone ketal (solketal) and Glycerol/formaldehyde acetals toward acid-catalyzed hydrolysis. J Braz Chem Soc 24:931–937

    Article  Google Scholar 

  16. Mota CJA, Silva CXA, Rosenbach N, Costa J, Silva F (2010) Glycerin derivatives as fuel additives: the addition of glycerol/acetone ketal (solketal) in gasolines. Energy Fuels 24:2733–2736

    Article  CAS  Google Scholar 

  17. Okuhara T (2002) Warter-tolerant solid acid catalysts. Chem Rev 102:3641–3666

    Article  CAS  Google Scholar 

  18. da Silva CXA, Mota CJA (2011) The influence of impurities on the acid-catalyzed reaction of glycerol with acetone. Biomass Bioenergy 35:3547–3551

    Article  Google Scholar 

  19. Mota CJA (2012) Valorization of glycerol by-product of biodiesel production. In: Luque R, Melero JA (eds) Advances in biodiesel production. Woodhead, Cambridge, pp 232–253

    Chapter  Google Scholar 

  20. Gonçalves VLC, Pinto BP, Silva JC, Mota CJA (2008) Acetylation of glycerol catalyzed by different solid acids. Catal Today 673:133–135

    Google Scholar 

  21. Silva LN, Gonçalves VLC, Mota CJA (2010) Acetylation of glycerol with acetic anhydride. Catal Commun 11:1036–1039

    Article  CAS  Google Scholar 

  22. Liao X, Zhu Y, Wang SG, Li Y (2010) Theoretical elucidation of acetylating glycerol with acetic acid and acetic anhydride. Appl Catal B 94:64–70

    Article  CAS  Google Scholar 

  23. Thursfield A, Anderson MW (1996) 1H, 2H, and 13C solid-state NMR studies of methanol adsorbed on a series of acidic microporous zeotype material. J Phys Chem 100:6698–6707

    Article  CAS  Google Scholar 

  24. Blaszkowski SR, van Santen RA (1996) The mechanism of dimethyl ether formation from methanol catalyzed by zeolitic protons. J Am Chem Soc 118:5152–5153

    Article  CAS  Google Scholar 

  25. Maihom T, Boekfa B, Sirijaraensre J, Nanok T, Probst M, Limtrakul J (2009) Reaction mechanisms of the methylation of ethene with methanol and dimethyl ether over H-ZSM-5: an ONIOM study. J Phys Chem C 113:6654–6662

    Article  CAS  Google Scholar 

  26. Haw JF, Nicholas JB, Xu T, Beck LW, Ferguson DB (1996) Physical organic chemistry of solid acids: lessons from in situ NMR and theoretical chemistry. Acc Chem Res 29:259–267

    Article  CAS  Google Scholar 

  27. García E, Laca M, Pérez E, Garrido A, Peinado J (2008) New class of acetal derived from glycerin as a biodiesel fuel component. Energy Fuels 22:4274–4280

    Article  Google Scholar 

  28. Dodson JR, Leite TCM, Pontes NS, Pinto BP, Mota CJA (2014) Green acetylation of solketal and glycerol formal by heterogeneous acid catalysts to form a potential biodiesel fuel additive. ChemSusChem 7:2728–2734

    Article  CAS  Google Scholar 

  29. Pacheco MA, Marshall CL (1997) Review of Dimethyl Carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels 11:2–29

    Article  CAS  Google Scholar 

  30. Omae I (2006) Aspects of carbon dioxide utilization. Catal Today 115:32–55

    Article  Google Scholar 

  31. Eta V, Mäki-Arvela P, Leino A, Kordás K, Salmi T, Murzin D, Mikkola J (2010) Synthesis of dimethyl carbonate from methanol and carbon dioxide: circumventing thermodynamic limitations. Ind Eng Chem Res 49:9609–9617

    Article  CAS  Google Scholar 

  32. Kizlink J, Pastucha I (1995) Preparation of dimethyl carbonate from methanol and carbon dioxide in the presence of Sn(iv) and Ti(iv) alkoxides and metal acetates. Collect Czech Chem Commun 60:687–692

    Article  CAS  Google Scholar 

  33. Sakakura T, Choi JC, Saito Y, Masuda T, Sako T, Oriyama T (1999) Metal-catalyzed dimethyl carbonate synthesis from carbon dioxide and acetals. J Org Chem 64:4506–4508

    Article  CAS  Google Scholar 

  34. Ballivet-Tkatchenko D, Jerphagnon T, Ligabue R, Plasseraud L, Poinsot D (2003) The role of distannoxanes in the synthesis of dimethyl carbonate from carbon dioxide. Appl Catal A 255:93–99

    Article  CAS  Google Scholar 

  35. Marciniak A (2015) Conversion of CO2 in dimethyl carbonate in the presence of dibutyltin oxide (Bu2SnO) catalyst and water suppressors. Dissertation, Federal University of Rio de Janeiro

    Google Scholar 

  36. Sonnati MO, Amigoni S, Taffin de Givenchy EP, Darmanin T, Choulet O, Guittard F (2013) Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chem 15:283–306

    Article  CAS  Google Scholar 

  37. Park JH, Choi JS, Woo SK, Lee SD, Cheong M, Kim HS, Lee H (2012) Isolation and characterization of intermediate catalytic species in the Zn-catalyzed glycerolysis of urea. Appl Catal A 433–434:35–40

    Article  Google Scholar 

  38. Aresta M, Dibenedetto A, Nocito F, Patore C (2006) A study on the carboxylation of glycerol to glycerol carbonate with carbon dioxide: the role of the catalyst, solvent and reaction conditions. J Molec Catal A 257:149–152

    Article  CAS  Google Scholar 

  39. Li J, Wang T (2011) Chemical equilibrium of glycerol carbonate synthesis from glycerol. J Chem Therm 43:731–736

    Article  CAS  Google Scholar 

  40. Peçanha LO, Piantonzzi R, Miranda JL, Souza-Aguiar EF, Mota CJA (2015) Metal-impregnated zeolite Y as efficient catalyst for the direct carbonation of glycerol with CO2. Appl Catal A 504:187–191

    Google Scholar 

Download references

Acknowledgments

The author thanks CNPq and FAPERJ for the research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Jose de Araujo Mota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mota, C.J.d.A. (2016). Chlorine-Free Heterogeneous Acid Catalysts. In: Tundo, P., He, LN., Lokteva, E., Mota, C. (eds) Chemistry Beyond Chlorine. Springer, Cham. https://doi.org/10.1007/978-3-319-30073-3_6

Download citation

Publish with us

Policies and ethics