Skip to main content
Log in

Chemisorptive Synthesis, Self-Assembly of Complicated 2D and 3D Supramolecular Architectures (Role of Hydrogen Bonds and Secondary Interactions Au···S and S···Cl), and Thermal Behavior of Pseudo-Polymeric Gold(III)–Mercury(II) Dibutyldithiocarbamato-Chlorido Complexes

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The interaction of mercury(II) dibutyl dithiocarbamate (BuDtc) with [AuCl4] anions in 2 M HCl was studied. The heterogeneous reaction of chemisorption binding of gold(III) from the solution leads to heteronuclear Au(III)–Hg(II) pseudo-polymeric complexes of the ionic type: ([Au{S2CN(C4H9)2}2]2[Hg2Cl6])n (I) and ([(C4H9)2NH2]0.5[Au{S2CN(C4H9)2}2]1.5[Hg2Cl6])n (II), whose crystal and supramolecular structures were determined by X-ray diffraction analysis (CIF files CCDC nos. 1965151 (I) and 1965152 (II)). The cationic part of each compound is represented by two structurally nonequivalent complex ions [Au{S2CN(C4H9)2}2]+ (A and B) being conformers. The structure of compound II additionally contains the dibutylammonium cation. In both cases, binuclear [Hg2Cl6]2– is a counterion (centrosymmetric in the structure of compound I and noncentrosymmetric in the structure of compound II). Owing to the secondary interactions Au···S and S···Cl (as well as hydrogen bonds N–H···Cl in compound II), all ionic structural units participate in the construction of pseudo-polymeric cationic and cation-anionic chains, which are combined into a complicatedly organized 2D supramolecular network (in I) or 3D framework (in II). The thermal behavior of compounds I and II was studied by simultaneous thermal analysis. The thermolysis of the complexes is accompanied by the quantitative regeneration of bound gold, liberation of HgCl2, and partial transformation of the latter into HgS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Priola, E., Bonometti, E., Brunella, V., et al., Polyhedron, 2016, vol. 104, p. 25.

    Article  CAS  Google Scholar 

  2. Amani, V., Alizadeh, R., Alavije, H.S., Heydari, S.F., and Abafat, M., J. Mol. Struct., 2017, vol. 1142, p. 92.

    Article  CAS  Google Scholar 

  3. Rajarajan, M., NovusInt. J. Chem., 2013, vol. 2, no. 1, p. 1.

    Google Scholar 

  4. Onwudiwe, D.C. and Ajibade, P.A., Mater. Lett., 2011, vol. 65, nos. 21–22, p. 3258.

    Article  CAS  Google Scholar 

  5. Dar, S.H., Thirumaran, S., and Selvanayagam, S., Polyhedron, 2015, vol. 96, p. 16.

    Article  CAS  Google Scholar 

  6. Manohar, A., Ramalingam, K., and Karpagavel, K., Int. J. ChemTech Res., 2014, vol. 6, no. 5, p. 2620.

    CAS  Google Scholar 

  7. Prasad, R., Yadav, R., Trivedi, M., et al., J. Mol. Struct., 2016, vol. 1103, p. 265.

    Article  CAS  Google Scholar 

  8. Loseva, O.V., Rodina, T.A., Smolentsev, A.I., and Ivanov, A.V., Russ. J. Coord. Chem., 2016, vol. 42, no. 11, p. 719. https://doi.org/10.1134/S1070328416110063

    Article  CAS  Google Scholar 

  9. Loseva, O.V., Rodina, T.A., and Ivanov, A.V., Russ. J. Gen. Chem., 2019, vol. 89, no. 11, p. 2273. https://doi.org/10.1134/S1070363219110185

    Article  CAS  Google Scholar 

  10. Loseva, O.V., Rodina, T.A., Smolentsev, A.I., and Ivanov, A.V., Polyhedron, 2017, vol. 134, p. 238.

    Article  CAS  Google Scholar 

  11. Loseva, O.V., Rodina, T.A., Antzutkin, O.N., and Ivanov, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 12, p. 2540. https://doi.org/10.1134/S1070363218120149

    Article  CAS  Google Scholar 

  12. Ivanov, A.V., Sergienko, V.I., Gerasimenko, A.V., et al., Russ. J. Coord. Chem., 2010, vol. 36, no. 5, p. 353. https://doi.org/10.1134/S1070328410050064

    Article  CAS  Google Scholar 

  13. Rodina, T.A., Loseva, O.V., Smolentsev, A.I., and Ivanov, A.V., J. Struct. Chem., 2016, vol. 57, no. 1, p. 146. https://doi.org/10.1134/S0022476616010182

    Article  CAS  Google Scholar 

  14. Byr’ko, V.M., Ditiokarbamaty (Dithiocarbamates), Moscow: Nauka, 1984.

    Google Scholar 

  15. Cox, M.J. and Tiekink, E.R.T., Z. Kristallogr., 1999, vol. 214, no. 9, p. 571.

    CAS  Google Scholar 

  16. APEX2 (version 1.08), SAINT (version 7.03), SADABS (version 2.11), SHELXTL (version 6.12), Madison: Bruker AXS Inc., 2004.

  17. Pines, A., Gibby, M.G., and Waugh, J.S., J. Chem. Phys., 1972, vol. 56, no. 4, p. 1776.

    Article  CAS  Google Scholar 

  18. Pauling, L., The Nature of the Chemical Bond and the Structure of Molecules and Crystals, London: Cornell Univ., 1960.

    Google Scholar 

  19. Bondi, A., J. Phys. Chem., 1964, vol. 68, no. 3, p. 441.

    Article  CAS  Google Scholar 

  20. Exarchos, G., Robinson, S.D., and Steed, J.W., Polyhedron, 2001, vol. 20, nos. 24−25, p. 2951.

    Article  CAS  Google Scholar 

  21. Elwej, R., Hannachi, N., Chaabane, I., et al., Inorg. Chim. Acta, 2013, vol. 406, p. 10.

    Article  CAS  Google Scholar 

  22. Castiñeiras, A., García-Santos, I., and Saa, M., Acta Crystallogr., Sect, C: Struct. Chem., 2019, vol. 75, p. 891.

    Article  Google Scholar 

  23. Yang, L., Powel, D.R., and Houser, R.P., Dalton Trans., 2007, no. 9, p. 955.

  24. Alcock, N.W., Adv. Inorg. Chem. Radiochem., 1972, vol. 15, no. 1, p. 1.

    Article  CAS  Google Scholar 

  25. Haiduc, I. and Edelmann, F.T., Supramolecular Organometallic Chemistry, New York: Wiley-VCH, 1999.

    Book  Google Scholar 

  26. Rodina, T.A., Ivanov, A.V., Gerasimenko, A.V., et al., Polyhedron, 2012, vol. 40, no. 1, p. 53.

    Article  CAS  Google Scholar 

  27. Rodina, T.A., Filippova, T.S., Ivanov, A.V., et al., Russ. J. Inorg. Chem., 2012, vol. 57, no. 11, p. 1490. https://doi.org/10.1134/S0036023612110113

    Article  CAS  Google Scholar 

  28. Korneeva, E.V., Smolentsev, A.I., Antzutkin, O.N., and Ivanov, A.V., Russ. Chem. Bull.,Int. Ed., 2019, vol. 68, no. 1, p. 40. https://doi.org/10.1007/s11172-019-2413-7

    Article  CAS  Google Scholar 

  29. Leckey, J.H. and Nulf, L.E., Thermal Decomposition of Mercuric Sulfide. 1994. https://doi.org/10.2172/41313

  30. Angeloski, A., Rawal, A., Bhadbhade, M., et al., Cryst. Growth Des., 2019, vol. 19, p. 1125.

    Article  CAS  Google Scholar 

  31. Lidin, R.A., Andreeva, L.L., and Molochko, V.A. Spravochnik po neorganicheskoi khimii (Reference Book in Inorganic Chemistry), Moscow: Khimiya, 1987.

Download references

ACKNOWLEDGMENTS

The authors are grateful to Prof. O.N. Antzutkin (Luleå University of Technology, Luleå, Sweden) for the kindly presented opportunity of 13C CP-MAS NMR spectra recording.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.V., Loseva, O.V. & Rodina, T.A. Chemisorptive Synthesis, Self-Assembly of Complicated 2D and 3D Supramolecular Architectures (Role of Hydrogen Bonds and Secondary Interactions Au···S and S···Cl), and Thermal Behavior of Pseudo-Polymeric Gold(III)–Mercury(II) Dibutyldithiocarbamato-Chlorido Complexes. Russ J Coord Chem 46, 639–652 (2020). https://doi.org/10.1134/S107032842009002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107032842009002X

Keywords:

Navigation