Skip to main content
Log in

Principles of supramolecular polymeric chain formation in heteronuclear gold(III)–iron(III) complexes ([Au(S2CNR2)2][FeCl4]) n (R = C3H7, iso-C3H7): Chemisorption synthesis, structural organization, and thermal behavior

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Polymeric gold(III)–iron(III) dithiocarbamate–chloride complexes of the ionic type are synthesized by the chemisorption binding of gold(III) with freshly precipitated iron(III) dipropyl and di-iso-propyl dithiocarbamates from solutions of H[AuCl4] in 2 M HCl. Heteropolynuclear complexes of the compositions ([Au{S2CN(C3H7)2}2][FeCl4])n (I) and ([Au{S2CN(iso-C3H7)2}2][FeCl4])n (II) are preparatively isolated as individual forms of gold(III) binding. The structural organization of the complexes is established by X-ray diffraction analysis (CIF files CCDC no. 1480802 (I) and no. 1480806 (II)). The structures of compounds I and II are characterized at the supramolecular level by the presence of two types of polymeric chains, the methods of formation of which differ substantially. Compound I contains the following structural units: four structurally nonequivalent centrosymmetric complex cations [Au{S2CN(C3H7)2}2]+ (A, B, С, and D) and two complex anions [FeCl4] related to each other as conformers. Two independent cation-cationic linear polymeric chains (···А···В···)n and (···С···D···)n are formed in the structure of complex I due to pair relatively weak secondary interactions Au···S (nonvalent type) between the adjacent complex cations. The structure of compound II is characterized by zigzag cation-anionic chains (···[Au{S2CN(iso-C3H7)2}2]+···[FeCl4]···)n in the formation of which the secondary interactions Au···Cl play the determining role. The thermal behavior of complexes I and II is studied by simultaneous thermal analysis. The thermal destruction process includes the thermolysis of the dithiocarbamate moiety of the complexes and [FeCl4] with the reduction of gold(III) to the metal, the liberation of FeCl3, and the partial transformation of the latter into Fe2O3. In both cases, the final products of the thermal transformations of the studied compounds are elemental gold and Fe2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coucouvanis, D., Prog. Inorg. Chem., 1979, vol. 26, p. 301.

    CAS  Google Scholar 

  2. Golding, R.M., Tennant, W.C., Kanekar, C.R., et al., J. Chem. Phys., 1966, vol. 45, no. 7, p. 2688.

    Article  CAS  Google Scholar 

  3. Eley, R.R., Duffy, N.V., and Uhrich, D.L., J. Inorg. Nucl. Chem., 1972, vol. 34, no. 12, p. 3681.

    Article  CAS  Google Scholar 

  4. Chapps, G.E., McCann, S.W., Wickman, H.H., and Sherwood, R.C., J. Chem. Phys., 1974, vol. 60, no. 3, p. 990.

    Article  CAS  Google Scholar 

  5. Law, N.A., Dietzsch, W., and Duffy, N.V., Polyhedron, 2003, vol. 22, no. 27, p. 3423.

    Article  CAS  Google Scholar 

  6. Grekova, A.V., Ivanchenko, P.A., and Seifullina, I.I., Vopr. Khim. Khim. Tekhnol., 2012, no. 1, p. 42.

    Google Scholar 

  7. Yoshimura, T. and Kotake, A., Antioxid. Redox Signal., 2004, vol. 6, no. 3, p. 639.

    Article  CAS  Google Scholar 

  8. Vanin, A.F., Bevers, L.M., Mikoyan, V.D., et al., Nitric Oxide, 2007, vol. 16, no. 1, p. 71.

    Article  CAS  Google Scholar 

  9. Vanin, A.F., Poltorakov, A.P., Mikoyan, V.D., et al., Nitric Oxide, 2006, vol. 15, no. 4, p. 295.

    Article  CAS  Google Scholar 

  10. Rodina, T.A., Ivanov, A.V., Gerasimenko, A.V., et al., Polyhedron, 2012, vol. 40, no. 1, p. 53.

    Article  CAS  Google Scholar 

  11. Ivanov, A.V., Rodina, T.A., and Loseva, O.V., Russ. J. Coord. Chem., 2014, vol. 40, no. 12, p. 875.

    Article  CAS  Google Scholar 

  12. Loseva, O.V. and Ivanov, A.V., Russ. J. Inorg. Chem., 2014, vol. 59, no. 12, p. 491.

    Article  Google Scholar 

  13. Loseva, O.V., Rodina, T.A., and Ivanov, A.V., Russ. J. Coord. Chem., 2013, vol. 39, no. 6, p. 463.

    Article  CAS  Google Scholar 

  14. Loseva, O.V., Rodina, T.A., Smolentsev, A.I., and Ivanov, A.V., J. Struct. Chem., 2014, vol. 55, no. 5, p. 901.

    Article  CAS  Google Scholar 

  15. Ivanov, A.V., Sergienko, V.I., Gerasimenko, A.V., et al., Russ. J. Coord. Chem., 2010, vol. 36, no. 5, p. 353.

    Article  CAS  Google Scholar 

  16. Rodina, T.A., Loseva, O.V., Smolentsev, A.I., and Ivanov, A.V., J. Struct. Chem., 2016, vol. 57, no. 1, p. 146.

    Article  CAS  Google Scholar 

  17. Zaeva, A.S., Ivanov, A.V., Gerasimenko, A.V., and Sergienko, V.I., Russ. J. Inorg. Chem., 2015, vol. 60, no. 2, p. 203.

    Article  CAS  Google Scholar 

  18. Zaeva, A.S., Ivanov, A.V., and Gerasimenko, A.V., Russ. J. Coord. Chem., 2015, vol. 41, no. 10, p. 644.

    Article  CAS  Google Scholar 

  19. Ivanov, A.V., Bredyuk, O.A., Loseva, O.V., and Rodina, T.A., Russ. J. Coord. Chem., 2015, vol. 41, no. 2, p. 108.

    Article  CAS  Google Scholar 

  20. Ivanov, A.V., Bredyuk, O.A., Loseva, O.V., and Antzutkin, O.N., Russ. J. Inorg. Chem., 2016, vol. 61, no. 6, p. 755.

    Article  CAS  Google Scholar 

  21. Ivanov, A.V., Loseva, O.V., Rodina, T.A., et al., Russ. J. Coord. Chem., 2016, vol. 42, no. 2, p. 104.

    Article  CAS  Google Scholar 

  22. Byr’ko, V.M., Ditiokarbamaty (Dithiocarbamates), Moscow: Nauka, 1984.

    Google Scholar 

  23. APEX2, Madison: Bruker AXS, 2010.

  24. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, no. 1, p. 3.

    Article  Google Scholar 

  25. Exarchos, G., Robinson, S.D., and Steed, J.W., Polyhedron, 2001, vol. 20, nos. 24–25, p. 2951.

    Article  CAS  Google Scholar 

  26. Pauling, L., The Nature of the Chemical Bond and the Structure of Molecules and Crystals, London: Cornell Univ., 1960.

    Google Scholar 

  27. Bondi, A., J. Phys. Chem., 1964, vol. 68, no. 3, p. 441.

    Article  CAS  Google Scholar 

  28. Bondi, A., J. Phys. Chem., 1966, vol. 70, no. 9, p. 3006.

    Article  CAS  Google Scholar 

  29. Alcock, N.W., Adv. Inorg. Chem. Radiochem., 1972, vol. 15, no. 1, p. 1.

    Article  CAS  Google Scholar 

  30. Olmos, M.E., Modern Supramolecular Gold Chemistry: Gold-Metal Interactions and Applications, Laguna, A., Ed., Weinheim: Wiley, 2008, p. 295.

  31. Castineiras, A., Dehnen, S., Fuchs, A., et al., Dalton Trans., 2009, no. 15, p. 2731.

    Article  Google Scholar 

  32. Han, S., Jung, O.-S., and Lee, Y.-A., Transition Met. Chem., 2011, vol. 36, no. 7, p. 691.

    Article  CAS  Google Scholar 

  33. Koskinen, L., Jääskeläinen, S., Kalenius, E., et al., Cryst. Growth Des., 2014, vol. 14, no. 4, p. 1989.

    Article  CAS  Google Scholar 

  34. Khan, E., Khan, U.A., Badshah, A., et al., J. Mol. Struct., 2014, vol. 1060, p. 150.

    Article  CAS  Google Scholar 

  35. Rodina, T.A., Korneeva, E.V., Antzutkin, O.N., and Ivanov, A.V., Spectrochim. Acta, Part A, 2015, vol. 149, p. 881.

    Article  CAS  Google Scholar 

  36. Lidin, R.A., Andreeva, L.L., and Molochko, V.A., Spravochnik po neorganicheskoi khimii (Handbook in Inorganic Chemistry), Moscow: Khimiya, 1987.

    Google Scholar 

  37. Kaushik, N.K., Chattwal, G.R., and Sharma, A.K., J. Therm. Anal., 1983, vol. 26, no. 2, p. 309.

    Article  CAS  Google Scholar 

  38. Singhal, S., Sharma, C.L., Garg, A.N., and Chandra, K., Transition Met. Chem., 2001, vol. 26, nos. 1–2, p. 81.

    Article  CAS  Google Scholar 

  39. Singhal, S., Garg, A.N., and Chandra, K., J. Alloys Compd., 2007, vol. 428, nos. 1–2, p. 72.

    Article  CAS  Google Scholar 

  40. Pastorek, R., Šarha, P., Peterek, T., and Trávnícek, Z., Polyhedron, 2011, vol. 30, no. 17, p. 2795.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanov.

Additional information

Original Russian Text © O.V. Loseva, T.A. Rodina, A.V. Gerasimenko, A.V. Ivanov, 2017, published in Koordinatsionnaya Khimiya, 2017, Vol. 43, No. 5, pp. 290–300.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loseva, O.V., Rodina, T.A., Gerasimenko, A.V. et al. Principles of supramolecular polymeric chain formation in heteronuclear gold(III)–iron(III) complexes ([Au(S2CNR2)2][FeCl4]) n (R = C3H7, iso-C3H7): Chemisorption synthesis, structural organization, and thermal behavior. Russ J Coord Chem 43, 286–296 (2017). https://doi.org/10.1134/S1070328417050049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328417050049

Keywords

Navigation