Skip to main content
Log in

Chemisorption binding of gold(III) from solutions with bismuth dipropyldithiocarbamate: Supramolecular self-assembly (role of the secondary Au…S and aurophilic interactions) and thermal behavior of the solvated heteropolynuclear ionic type complex ([Au{S2CN(C3H7)2}2]3[Bi2Cl9] • 0.5CO(CH3)2 • 0.5HCl) n

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

The reaction of binuclear bismuth(III) N,N-dipropyldithiocarbamate [Bi2{S2CN(C3H7)2}6] with a solution of AuCl3 in 2 M HCl was studied. Crystallization of the heterogeneous reaction products from an acetone solution afforded the polymeric solvated heteropolynuclear gold(III)–bismuth complex, ([Au{S2CN(C3H7)2}2]3[Bi2Cl9] · 1/2CO(CH3)2 · 1/2HCl)n (I). According to X-ray diffraction data (CIF file CCDC no. 1050766), the structure of I comprises four isomeric [Au{S2CN(C3H7)2}2]+ cations in 1: 1: 2: 2 ratio, namely: cation “A” with the Au(1) atom, cation “B” with the Au(2) atom, cation “C” with the Au(3) atom, and cation “D” with the Au(4) atom, and the discrete binuclear [Bi2Cl9]3– anions. The isomeric gold(III) complex cations are involved in the construction of two types of cationic triads, [“C”···“A”···“C”] and [“D”···“B”···“D”], through secondary bonds and short Au···S contacts. The cation types differ by both the nature of binding and the Au–Au distances. The weak aurophilic binding between the cationic triads (Au···Au 3.5416(2) Å) gives rise to zigzag-like polymeric chains (···[“C”···“A”···“C”]···[“D”···“B”···“D”]···)n extended along the y axis. In turn, the [Bi2Cl9]3– anions located on one side of polymer chains are held by the secondary Cl···S bonds. The outer-sphere CO(CH3)2 and HCl solvate molecules joined by hydrogen bonds are located in the space between bismuth anions. The thermal behavior of I was studied by simultaneous thermal analysis. The thermal destruction of the complex includes desolvation and thermolysis of the dithiocarbamate moiety and [Bi2Cl9]3– with liberation of gold metal and bismuth chloride (which is subsequently evaporated) and partial formation of Bi2S3. In the temperature range of 712–828°C, bismuth sulfide is oxidized to (BiO)2SO4, which decomposes above 828°C to give Bi2O3. Bismuth(III) oxide and reduced gold are the final products of thermal transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, L.-M., Wu, X.-T., and Chen, L., Coord. Chem. Rev., 2009, vol. 253, nos 23–24, p. 2787.

    Article  CAS  Google Scholar 

  2. Louvain, N., Mercier, N., and Boucher, F., Inorg. Chem., 2009, vol. 48, no. 3, p. 879.

    Article  CAS  Google Scholar 

  3. Hrizi, C., Samet, A., Abid, Y., et al., J. Mol. Struct., 2011, vol. 992, nos 1–3, p. 96.

    Article  CAS  Google Scholar 

  4. Jakubas, R., Piecha, A., Pietraszko, A., and Bator, G., Phys. Rev., 2005, vol. B72, no. 10, p. 104107.

    Article  Google Scholar 

  5. Piecha, A., Biao'ska, A., and Jakubas, R., J. Phys.: Condens. Matter, 2008, vol. 20, no. 32, comm. 325224.

    Google Scholar 

  6. Bi, W., Leblanc, N., Mercier, N., et al., Chem. Mater., 2009, vol. 21, no. 18, p. 4099.

    Article  CAS  Google Scholar 

  7. Zhu, X.H., Mercier, N., Frere, P., et al., Inorg. Chem., 2003, vol. 42, no. 17, p. 5330.

    Article  CAS  Google Scholar 

  8. Li, H., Lai, C.S., Wu, J., et al., J. Inorg. Biochem., 2007, vol. 101, no. 5, p. 809.

    Article  CAS  Google Scholar 

  9. Ishak, D.H.A., Ooi, K.K., Ang, K.-P., et al., J. Inorg. Biochem., 2014, vol. 130, p. 38.

    Article  CAS  Google Scholar 

  10. Ozturk, I.I., Banti, C.N., Kourkoumelis, N., et al., Polyhedron, 2014, vol. 67, p. 89.

    Article  CAS  Google Scholar 

  11. Jamaluddin, N.A., Baba, I., and Ibrahim, N., Malays. J. Anal. Sci, 2014, vol. 18, no. 2, p. 251.

    Google Scholar 

  12. Nomura, R., Kanaya, K., and Matsuda, H., Bull. Chem. Soc. Jpn., 1989, vol. 62, no. 3, p. 939.

    Article  CAS  Google Scholar 

  13. Marino, G., Chierice, G.O., Pinheiro, C.D., and Souza, A.G., Thermochim. Acta, 1999, vol. 328, nos. 1–2, p. 209.

    Article  CAS  Google Scholar 

  14. Monteiro, O.C., Nogueira, H.I.S., Trindade, T., and Motevalli, M., Chem. Mater., 2001, vol. 13, no. 6, p. 2103.

    Article  CAS  Google Scholar 

  15. Zhang, H., Huang, J., Zhou, X., and Zhong, X., Inorg. Chem., 2011, vol. 50, no. 16, p. 7729.

    Article  CAS  Google Scholar 

  16. Cabrita, J.F., Ferreira, V.C., and Monteiro, O.C., Electrochim. Acta, 2014, vol. 135, p. 121.

    Article  CAS  Google Scholar 

  17. Sivasekar, S., Ramalingam, K., Rizzoli, C., and Alexander, N., Inorg. Chim. Acta, 2014, vol. 419, p. 82.

    Article  CAS  Google Scholar 

  18. Rodina, T.A., Ivanov, A.V., Gerasimenko, A.V., et al., Polyhedron, 2012, vol. 40, no. 1, p. 53.

    Article  CAS  Google Scholar 

  19. Rodina, T.A., Ivanov, A.V., and Gerasimenko, A.V., Russ. J. Coord. Chem., 2014, vol. 40, no. 2, p. 100.

    Article  CAS  Google Scholar 

  20. Ivanov, A.V., Rodina, T.A., and Loseva, O.V., Russ. J. Coord. Chem., 2014, vol. 40, no. 12, p. 875.

    Article  CAS  Google Scholar 

  21. Ivanov, A.V., Loseva, O.V., Rodina, T.A., et al., Russ. J. Inorg. Chem., 2014, vol. 59, no. 8, p. 807.

    Article  CAS  Google Scholar 

  22. Loseva, O.V. and Ivanov, A.V., Russ. J. Inorg. Chem., 2014, vol. 59, no. 12, p. 1491.

    Article  CAS  Google Scholar 

  23. Loseva, O.V., Rodina, T.A., Smolentsev, A.I., and Ivanov, A.V., J. Struct. Chem. 2014, vol. 55, no. 5, p. 901.

    Article  CAS  Google Scholar 

  24. Zaeva, A.S., Ivanov, A.V., Gerasimenko, A.V., and Sergienko, V.I., Russ. J. Inorg. Chem., 2015, vol. 60, no. 2, p. 203.

    Article  CAS  Google Scholar 

  25. Ivanov, A.V., Bredyuk, O.A., Loseva, O.V., and Rodina, T.A., Russ. J. Coord. Chem., 2015, vol. 41, no. 2, p. 108.

    Article  CAS  Google Scholar 

  26. Ronconi, L., Giovagnini, L., Marzano, C., et al., Inorg. Chem., 2005, vol. 44, no. 6, p. 1867.

    Article  CAS  Google Scholar 

  27. Boscutti, G., Feltrin, L., Lorenzon, D., et al., Inorg. Chim. Acta, 2012, vol. 393, p. 304.

    Article  CAS  Google Scholar 

  28. Keter, F.K., Guzei, I.A., Nell, M., et al., Inorg. Chem., 2014, vol. 53, no. 4, p. 2058.

    Article  CAS  Google Scholar 

  29. Shi, Y., Chu, W., Wang, Y., et al., Inorg. Chem. Commun., 2013, vol. 30, p. 178.

    Article  CAS  Google Scholar 

  30. Byr’ko, V.M., Ditiokarbamaty (Dithiocarbamates), Moscow: Nauka, 1984.

    Google Scholar 

  31. APEX2, Madison (WI): Bruker AXS, 2010.

  32. SAINT, Madison (WI): Bruker AXS, 2010.

  33. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 112.

    Article  CAS  Google Scholar 

  34. Bondi, A., J. Phys. Chem., 1964, vol. 68, no. 3, p. 441.

    Article  CAS  Google Scholar 

  35. Bondi, A., J. Phys. Chem., 1966, vol. 70, no. 9, p. 3006.

    Article  CAS  Google Scholar 

  36. Jaschinski, B., Blachnik, R., Pawlak, R., and Reuter, H., J. Kristallogr. NCS, 1998, vol. 213, nos. 1–4, p. 541.

    CAS  Google Scholar 

  37. Savilov, S., Kloo, L., Kuznetsov, A., et al., Z. Anorg. Allg. Chem., 2003, vol. 629, no. 14, p. 2525.

    Article  CAS  Google Scholar 

  38. Gerasimenko, A.V., Karaseva, E.T., and Polishchuk, A.V., Acta Crystallogr., Sect E: Structure Reports Online, 2008, vol. 64, no. 2, p. m378.

    Article  Google Scholar 

  39. Alcock, N.W., Adv. Inorg. Chem. Radiochem., 1972, vol. 15, no. 1, p. 1.

    CAS  Google Scholar 

  40. Uson, R., Laguna, A., Laguna, M., et al., Chem. Commun., 1988, no. 11, p. 740.

    Article  Google Scholar 

  41. Pathaneni, S.S. and Desiraju, G.R., J. Chem. Soc., Dalton Trans., 1993, no. 2, p. 319.

    Article  Google Scholar 

  42. Schmidbaur, H., Gold Bull., 2000, vol. 33, no. 1, p. 3.

    Article  CAS  Google Scholar 

  43. Haiduc, I. and Edelmann, F.T., Supramolecular Organometallic Chemistry, Cambridge: Wiley, 1999.

    Book  Google Scholar 

  44. Razuvaev, G.A., Almazov, G.V., Domrachev, G.A., et al., Dokl. Akad. Nauk SSSR, 1987, vol. 294, no. 1, p. 141.

    CAS  Google Scholar 

  45. Lidin, R.A., Andreeva, L.L., and Molochko, V.A., Spravochnik po neorganicheskoi khimii (Handbook in Inorganic Chemistry), Moscow: Khimiya, 1987.

    Google Scholar 

  46. Larionov, S.V., Mikhalin, I.N., Glinskaya, L.A., et al., Russ. J Inorg. Chem., 2004, vol. 49, no. 3, p. 331.

    Google Scholar 

  47. Ptaszynski, B., Skiba, E., and Krystek, J., J. Therm. Anal. Calorim., 2001, vol. 65, no. 1, p. 231.

    Article  CAS  Google Scholar 

  48. Ripan, R. and Ceteanu, I., Chimia Metalelor, Bucuresti: Editura Didactica si Pedagogica, 1968, vol. 1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanov.

Additional information

Original Russian Text © A.S. Zaeva, A.V. Ivanov, A.V. Gerasimenko, 2015, published in Koordinatsionnaya Khimiya, 2015, Vol. 41, No. 10, pp. 590–599.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaeva, A.S., Ivanov, A.V. & Gerasimenko, A.V. Chemisorption binding of gold(III) from solutions with bismuth dipropyldithiocarbamate: Supramolecular self-assembly (role of the secondary Au…S and aurophilic interactions) and thermal behavior of the solvated heteropolynuclear ionic type complex ([Au{S2CN(C3H7)2}2]3[Bi2Cl9] • 0.5CO(CH3)2 • 0.5HCl) n . Russ J Coord Chem 41, 644–653 (2015). https://doi.org/10.1134/S1070328415090109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328415090109

Keywords

Navigation