Skip to main content
Log in

Fracture Mechanism of the Rock Under the Action of Shock Waves

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—Fracture mechanism and dynamics is studied with a time resolution of 2 ns in the quartz, granite, gabbro-diabase, and calcite samples in a shock wave field. It is found out that jets of positively charged ions are ejected from the shock-loaded surface of minerals. The structure of the surface layer of these rocks after loading by shock waves is studied by the infrared, Raman, and photoluminescent spectroscopy. It is established that in the surface layers of quartz and granites, diaplectic glasses are formed, whereas in the surface layers of calcite—the high pressure phase—calcite III is produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. Adushkin, V.V. and Soloviev, S.P., Generation of low-frequency electric fields by explosion crater formation, J. Geophys. Res., 1996, vol. 101, no. B9, pp. 20165–20174.

    Article  Google Scholar 

  2. Adushkin, V.V. and Spivak, A.A., Geomekhanika krupnomasshtabnykh vzryvov (Geomechanics of Large Explosions), Moscow: Nedra, 1993.

  3. Baril, M.R. and Huntley, D.J., Infrared stimulated luminescence and phosphorescence spectra of irradiated feldspars, J. Phys.: Condens. Matter, 2003, vol. 15, no. 46, pp. 8029–8048.

    Google Scholar 

  4. Betekhtin, V.I. and Kadomtsev, A.G., Evolution of microscopic cracks and pores in solids under loading, Phys. Solid State, 2005, vol. 47, no. 5, pp. 825–831.

    Article  Google Scholar 

  5. Bishop, J.L., Lane, M.D., Dyar, M.D., and Brown, A.J., Reflectance and emission spectroscope study of  four groups of phyllosilicates: smectites, kaolinite, serpenites, chlorites and micas, Clay Miner., 2008, vol. 43, no. 1, pp. 35–54.

    Article  Google Scholar 

  6. Born, M. and Wolf, E., Principles of Optics, 2nd ed., Oxford: Pergamon Press, 1964.

    Google Scholar 

  7. Bykova, V.V., Stakhovskii, I.R., Fedorova, T.S., Khrustalev, Yu.A., Deryagin, B.V., and Toporov, Yu.P., Electron emission during rock fracture, Izv. Akad. Nauk SSSR,Fiz. Zemli, 1987, no. 8, pp. 87–90.

  8. Catalli, K. and Williams, Q., A high-pressure phase transition of calcite-III, Am. Mineral., 2005, vol. 90, pp. 1679–1682.

    Article  Google Scholar 

  9. Chapman, G.N. and Walton, A.J., Triboluminescence of glasses and quartz, J. Appl. Phys., 1983, vol. 54, no. 10, pp. 5961–5965.

    Article  Google Scholar 

  10. Cheremskoi, P.G., Slezov, V.V., and Betekhtin, V.I., Pory v tverdom tele (Pores in a Solid), Moscow: Energoatomizdat, 1990.

  11. Chihara, H. and Koike, C., Infrared absorption spectra of plagioclase feldspar: Dependencies of composition and temperature, Planet. Space Sci., 2017, vol. 149, pp. 94–99.

    Article  Google Scholar 

  12. Cottrell, A.H., Theory of Crystal Dislocations, New York: Gordon and Breach, 1964.

    Google Scholar 

  13. Etchepare, J., Merian, M., and Kaplan, P. Vibrational normal modes of SiO2: I. α and β quartz, J. Chem. Phys., 1974, vol. 60, no. 5, pp. 1873–1876.

    Article  Google Scholar 

  14. Fortov, V.E., Intense shock waves and extreme states of matter, Phys.-Usp., 2007, vol. 50, no. 4, pp. 333–353.

    Article  Google Scholar 

  15. Galvez, H.I.P., Analysis of the state of the art of blast-induced fragment conditioning, Miner. Eng., 2011, vol. 24, pp. 1638–1640.

    Article  Google Scholar 

  16. Gotze, J., Application of cathodoluminescence microscopy and spectroscopy in geosciences, Microsc. Microanal., 2012, vol. 18, no. 6, pp. 1270–1284.

    Article  Google Scholar 

  17. Gunasekaran, S., Anbalagan, G., and Pandi, S. Raman and infrared spectra of carbonates of calcite structure, J. Raman Spectrosc, 2006, vol. 37, no. 9, pp. 892–899.

    Article  Google Scholar 

  18. Heymann, D. and Horz, F., Raman-spectroscopy and X‑ray diffractometer studies of experimentally produced diaplectic feldspar glass, Phys. Chem. Miner., 1990, vol. 17, pp. 38–44.

    Article  Google Scholar 

  19. Huntley, D.J., Godfrey-Smith, D.I., and Thewalt, M.L.W., Optical dating of sediments, Nature, 1985, vol. 313, pp. 105–107.

    Article  Google Scholar 

  20. Iishi, K. and Yamacuchi, H., Study of the force field and the vibrational normal modes in the α-β quartz phase transition, Am. Mineral., 1975, vol. 60, nos. 9–10, pp. 907–912.

    Google Scholar 

  21. Johnson, J.R., Horz, F., and Staid, M.I., Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars, Am. Mineral., 2003, vol. 88, pp. 1575–1582.

    Article  Google Scholar 

  22. Kanel’, G.I., Fortov, V.E., and Razorenov, S.V., Shock waves in condensed-state physics, Phys.-Usp., 2007, vol. 50, no. 8, pp. 771–791.

    Article  Google Scholar 

  23. Kanel, G.I., Razorenov, S.V., and Fortov, V.E., Shock-Wave Phenomena and the Properties of Condensed Matter, New York: Springer, 2004.

    Book  Google Scholar 

  24. Kawaguchi, Y., Fractoluminescence spectra in crystalline quartz, Jpn. J. Appl. Phys., 1998, vol. 37, pp. 1892–1896.

    Article  Google Scholar 

  25. Kuzmenko, A.B., Kramers–Kronig constrained variational analysis of optical spectra, Rev. Sci. Instrum., 2005, vol. 76, no. 8, pp. 1–10.

    Article  Google Scholar 

  26. Lakshtanov, D.L., Sinogeikin, S.V., and Bass, J.D., High-temperature phase transitions and elasticity of silica polymorphs, Phys. Chem. Miner., 2007, vol. 34, pp. 11–22.

    Article  Google Scholar 

  27. Langenhorst, F., Shock metamorphism of some minerals: Basic introduction and microstructural observations, Bull. Geosci., 2002, vol. 77, no. 4, pp. 265–282.

    Google Scholar 

  28. Lou, D., Sun, F., and Li, L., Study on vibrational modes by group theory and infrared spectra by DFT for calcite crystal, Chin. Opt. Lett., 2007, vol. 5, no. 6, pp. 370–372.

    Google Scholar 

  29. Madelung, O, Festkörpertheorie, Berlin: Springer, 1972.

    Book  Google Scholar 

  30. McMillan, P.F. and Wolf, G.H., A Raman spectroscopic study of shocked single crystalline quartz, Phys. Chem. Miner., 1992, vol. 19, no. 2, pp. 71–79.

    Article  Google Scholar 

  31. Merlini, M., Crichton, W.A., Chantel, J., Guignard, J., and Poli, S., Evidence of interspersed co-existing CaCO3-III and CaCO3-IIIb structures in polycrystalline CaCO3 at high pressure, Mineral. Mag., 2014, vol. 78, no. 2, pp. 225–233.

    Article  Google Scholar 

  32. Merrill, L. and Bassett, W.A., The crystal structure of CaCO3(II), a high-pressure metastable phase of calcium carbonate, Acta Crystallogr., Sect. B, 1975, vol. 31, no. 2, pp. 343–349.

    Article  Google Scholar 

  33. O’Keefe, S.G. and Thiel, D.V., Electromagnetic emissions during rock blasting, Geophys. Res. Lett., 1991, vol. 18, no. 5, pp. 889–892.

    Article  Google Scholar 

  34. Petrov, V.A., Bashkarev, A.Ya., and Vettegren’, V.I., Fizicheskie osnovy prognozirovaniya dol- govechnosti konstruktsionnykh materialov (Physical Basics of Forecasting the Life Expectancy of Construction Materials), St. Petersburg: Politekhnika, 1993.

  35. Regel’, V.P., Slutsker, A.I., and Tomashevskii, E.E., Kineticheskaya priroda prochnosti tverdykh tel (Kinetic Nature of the Strength in Solids), Moscow: Nauka, 1974.

  36. Schneider, H., Infrared spectroscopic studies of experimentally shock-loaded quartz, Meteoritics, 1978, vol. 13, no. 2, pp. 227–234.

    Article  Google Scholar 

  37. Schön, J.H., Physical Properties of Rocks: A Workbook, Amsterdam: Elsevier, 2011.

    Google Scholar 

  38. Semiokhin, I.A., Elementarnye protsessy v nizkotemperaturnoi, plazme (Elementary Processes in Low-Temperature Plasma), Moscow: MGU, 1988.

  39. Shcherbakov, I.P., Vettegren’, V.I., Mamalimov, R.I., and Makhmudov, K.F., Dynamics of the nanosecond destruction of stressed granite during shock loading, Tech. Phys., 2017a, vol. 62, no. 8, pp. 1194–1196.

    Article  Google Scholar 

  40. Shcherbakov, I.P., Vettegren’, V.I., and Mamalimov, R.I., Mechanism and dynamics of the disintegration calcite shock waves, Tech. Phys., 2017b, vol. 62, no. 10, pp. 1533–1537.

    Article  Google Scholar 

  41. Shcherbakov, I.P., Vettegren’, V.I., Mamalimov, R.I., and Makhmudov, K.F., The influence of stress on electron emission initiated by a shock wave from a heterogeneous material (granite), Phys. Solid State, 2017c, vol. 59, no. 3, pp. 575–577.

    Article  Google Scholar 

  42. Shcherbakov, I.P., Vettegren’, V.I., Mamalimov, R.I., and Makhmudov, K.F., Mechanism and dynamics of fracture of the stressed granite surface by a shock wave, Tech. Phys., 2018a, vol. 63, no. 7, pp. 979–983.

    Article  Google Scholar 

  43. Shcherbakov, I.P., Vettegren’, V.I., Bashkarev, A.Ya., and Mamalimov, R.I., Transformation of the surface structure of marble under the action of a shock wave, Tech. Phys., 2018b, vol. 63, no. 1, pp. 78–82.

    Article  Google Scholar 

  44. Shimoda, S. and Brydon, J.E., IR study of some interstratified mineral of mica and montmorillonites, Clays Clay Miner., 1971, vol. 19, pp. 61–66.

    Article  Google Scholar 

  45. Silin’, A.R. and Trukhin, A.N., Tochechnye defekty i elementarnye vozbuzhdeniya v kristallicheskom i stekloobraznom SiO2 (Point Defects and Elementary Excitations in Crystalline and Vitreous SiO2), Riga: Zinatne, 1985.

  46. Stevens Kalceff, M.A. and Phillips, M.R., Cathodoluminescence microcharacterization of the defect structure of quartz, Phys. Rev. B: Condens. Matter, 1995, vol. 52, no. 5, pp. 3122–3134.

    Article  Google Scholar 

  47. Turro, N.J., Ramamurty, V., and Scaiano, J.C., Modern Molecular Photochemistry of Organic Molecules, Sausalito, California: Univ. Sci. Books, 2010.

    Google Scholar 

  48. Vettegren’, V.I., Bashkarev, A.Ya., Mamalimov, R.I., and Shcherbakov, I.P., Fractoluminescense of crystalline quartz upon an impact, Phys. Solid State, 2008, vol. 50, no. 1, pp. 28–31.

  49. Vettegren’, V.I., Kuksenko, V.S., and Shcherbakov, I.P., Emission kinetics of light, sound, and radio waves from single-crystalline quartz after impact on its surface, Tech. Phys., 2011, vol. 56, no. 4, pp. 577–580.

    Article  Google Scholar 

  50. Vettegren’, V.I., Kuksenko, V.S., Mamalimov, R.I., and Shcherbakov, I.P., Dynamics of fractoluminescence, electromagnetic and acoustic emissions upon impact on a granite surface, Izv. Phys. Solid Earth, 2012a, vol. 48, no. 5, pp. 415–420.

    Article  Google Scholar 

  51. Vettegren’, V.I., Kuksenko, V.S., and Shcherbakov, I.P., Dynamics of microcracks and time dependences of surface deformation of a heterogeneous body (granite) under an impact, Phys. Solid State, 2012b, vol. 54, no. 7, pp. 1425–1429.

    Article  Google Scholar 

  52. Vettegren’, V.I., Kuksenko, V.S., and Shcherbakov, I.P., Dynamics of fractoluminescence and electromagnetic and acoustic emission upon an impact against the marble surface, Tech. Phys., 2013, vol. 83, no. 1, pp. 136–139.

    Article  Google Scholar 

  53. Vettegren’, V.I., Shcherbakov, I.P., Kuksenko, V.S., and Mamalimov, R.I., Emission of plasma escaping from a heterogeneous solid (granite) under an electric discharge near its surface, Phys. Solid State, 2014a, vol. 56, no. 9, pp. 1828–1832.

    Article  Google Scholar 

  54. Vettegren’, V.I., Shcherbakov, I.P., Voronin, A.V., Kuksenko, V.S., and Mamalimov, R.I., Dynamics of the deformation and destruction of a heterogeneous body (granite) under the influence of an electric discharge, Phys. Solid State, 2014b, vol. 56, no. 5, pp. 1018–1022.

    Article  Google Scholar 

  55. Vettegren’, V.I., Voronin A.V., Kuksenko V.S., Mamalimov R.I., and Shcherbakov I.P., Luminescence of quartz under the action of a shock wave, Phys. Solid State, 2014c, vol. 56, no. 2, pp. 317–320.

    Article  Google Scholar 

  56. Vettegren’, V.I., Kuksenko, V.S., Shcherbakov, I.P., and Mamalimov, R.I., Quartz structure transformation under a shock wave, Phys. Solid State, 2015, vol. 57, no. 12, pp. 2458–2460.

    Article  Google Scholar 

  57. Vettegren’, V.I., Kuksenko, V.S., and Shcherbakov, I.P., The mechanism and dynamics of rock fracture upon mechanical impact and electric discharge, Izv. Phys. Solid Earth, 2016a, vol. 52, no. 5, pp. 754–769.

    Article  Google Scholar 

  58. Vettegren’, V.I., Shcherbakov, I.P., Mamalimov, R.I., and Kulik, V.B., Structural changes in a heterogeneous solid (granite) under shock wave action, Phys. Solid State, 2016b, vol. 58, no. 4, pp. 699–702.

    Article  Google Scholar 

  59. Vettegren’, V.I., Shcherbakov, I.P., and Mamalimov, R.I., Nanosecond dynamics of destruction of an inhomogeneous solid (granite) induced by an impact on its surface, Phys. Solid State, 2016c, vol. 58, no. 11, pp. 2335–2338.

    Article  Google Scholar 

  60. Vladimirov, V.I., Fizicheskaya priroda razrusheniya metallov (Physical Nature of Failure in Metals), Moscow: Metallurgiya, 1984.

  61. Williams, Q., Collerson, B., and Knittle, E., Vibrational spectra of magnesite (MgCO3) and calcite III at high pressures, Am. Mineral., 1992, vol. 77, pp. 1158–1165.

    Google Scholar 

  62. Williams, Q., Hemley, R.J., Kruger, M.B., and Jeanloz, R.J., High-pressure infrared spectra of α-quartz, coesite, stishovite ans silica glass, J. Geophys. Res.: Solid Earth, 1993, vol. 98, no. B12, pp. 22157–22170.

    Article  Google Scholar 

  63. Zaidel’, A.N., Prokof’ev, V.K., Raiskii, S.M., and Shreider, E.Ya., Tablitsy spektral’nykh linii (Tables of Spectral Lines), Moscow: Fizmatgiz. 1952.

  64. Zakrevskii, V.A. and Shul’diner, A.V., Dislocation interaction with radiation defects in alkali-halide crystals, Phys. Solid State, 2000, vol. 42, no. 2, pp. 270–273.

    Article  Google Scholar 

  65. Zakrevskii, V.A. and Shul’diner, A.V., Electronic excitations owing to plastic deformation of ionic crystals, Phys. Solid State, 1999, vol. 41, no. 5, pp. 817–819.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vettegren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakov, I.P., Vettegren, V.I. & Mamalimov, R.I. Fracture Mechanism of the Rock Under the Action of Shock Waves. Izv., Phys. Solid Earth 56, 623–634 (2020). https://doi.org/10.1134/S1069351320050092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351320050092

Keywords:

Navigation