Skip to main content
Log in

Times of Increased Probabilities for Occurrence of World’s Largest Earthquakes: 30 Years Hypothesis Testing in Real Time

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

For the past 30 years, the M8 medium-term earthquake prediction algorithm has been applied globally every six months in real time for identifying the areas where the world’s strongest earthquakes are most likely to occur. As of now, the statistics of the outcomes observed in the Global Test with a confidence exceeding 99% indicates fairly high efficiency of the forecasts based on the M8 algorithm and those based on its combination with the MSc algorithm which more accurately localizes the focal zone of the expected earthquake. Thus, the null hypothesis of random occurrence in seismically active areas is rejected with seismologically certainty at least for the world’s strongest earthquakes in the magnitude ranges 8.0+ and 7.5+. The results of this experimental testing indirectly confirm the predictability of the strong earthquakes and the existence of both the common dynamic characteristics and diverse behavior during phase transitions in a complex hierarchical nonlinear fault-and-block system in the Earth’s lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Advanced National Seismic System. https://earthquake. usgs.gov/earthquakes/search/

  2. Aleksandrov, A.P. and Zhurkov S.N., Yavleniye khrupkogo razryva (The Phenomenon of Brittle Rupture), Moscow: Gostekhizdat, 1933.

  3. Bhatia, S.C., Chalam, S.V., Gaur, V.K., Keilis-Borok, V.I., and Kossobokov, V.G., On intermediate term prediction of strong earthquakes in the Himalayan arc region using pattern recognition algorithm M8, Proc. Indian Ac. Sci.,Earth Planet. Sci., 1989, vol. 98, no. 1, pp. 111–123.

    Google Scholar 

  4. Box, G.E.P., Robustness in the strategy of scientific model building, in Robustness in Statistics, Launer, R.L. and Wilkinson, G.N., Eds., New York: Academic Press, 1979, pp. 201–236.

    Google Scholar 

  5. Davis, C., Keilis-Borok, V., Kossobokov, V., and Soloviev, A., Advance prediction of the March 11, 2011 Great East Japan Earthquake: a missed opportunity for disaster preparedness. int., J. Disaster Risk Reduct., 2012, no. 1, pp. 17–32. https://doi.org/10.1016/j.ijdrr.2012.03.001

  6. Dobrovolsky, I.P., Zubkov, S.I., and Miachkin, V.I., Estimation of the size of earthquake preparation zones, Pure App. Geophys., 1979, vol. 117, no. 5, pp. 1025–1044. https://doi.org/10.1007/BF00876083

    Article  Google Scholar 

  7. Gabrielov, A., Newman, W.I., and Turcotte, D.L., An exactly soluble hierarchical clustering model: inverse cascades, self-similarity, and scaling, Phys. Rev. E, 1999, vol. 60, pp. 5293–5300.

    Article  Google Scholar 

  8. Gahalaut, V.K., Kuznetsov, I.V., Kossobokov, V.G., Gabrielov, A.M., and Keilis-Borok, V.I., Application of pattern recognition algorithm in the seismic belts of the Indian convergent plate margins—M8 algorithm, Proc. Indian Acad. Sci.,Earth Planet. Sci., 1992, vol. 101, no. 3, pp. 239–254.

    Google Scholar 

  9. Gelfand, I., Guberman, Sh., Keilis-Borok, V., Knopoff, L., Press, F., Ransman, E., Rotwain, I., and Sadovsky, A., Pattern recognition applied to earthquakes epicenters in California, Phys. Earth Planet Inter, 1976, no. 11, pp. 227–283.

  10. Ghil, M., Yiou, P., Hallegatte, S., Malamud, B.D., Naveau, P., Soloviev, A., Friederichs, P., Keilis-Borok V., Kondrashov D., Kossobokov V., Mestre O., Nicolis C., Rust H.W., Shebalin P., Vrac M., et al., Extreme events: dynamics, statistics and prediction, Nonlin. Processes Geophys., 2011, vol. 18, pp. 295–350.

  11. Global Hypocenters Data Base CD-ROM NEIC/USGS, Denver, 1989. https://doi.org/10.3133/75 https://doi.org/10.5194/npg-18-295-201

  12. Gorshkov, A., Kossobokov, V., and Soloviev, A., Chapter 6, Recognition of earthquake-prone areas, in Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, Keilis-Borok, V.I. and Soloviev, A.A., Eds., Heidelberg: Springer, 2003, pp. 141–207.

  13. Gutenberg, B. and Richter, C.F., Seismicity of the Earth, 2nd ed., Princeton: Princeton Univ., 1954.

    Google Scholar 

  14. Harte, D., Li, D.-F., Vreede, M., and Vere-Jones, D., Quantifying the M8 prediction algorithm: reduction to a single critical variable and stability results, New Zealand, J. Geol. Geophys., 2003, vol. 46, pp. 141–152.

    Article  Google Scholar 

  15. Healy, J.H., Kossobokov, V.G., and Dewey, J.W., A test to evaluate the earthquake prediction algorithm, M8, U.S. Geol. Surv. Open-File Report 92-401, 1992, p. 23. with 6 Appendices.

  16. Jordan, T.H., (Chair), Operational earthquake forecasting: state of knowledge and guidelines for utilization, Report by the International Commission on Earthquake Forecasting for Civil Protection, Ann. Geophys., 2011, vol. 54, no. 4, p. 391. https://doi.org/10.4401/ag-5350

    Article  Google Scholar 

  17. Kato, M., On the apparently inappropriate use of multiple hypothesis testing in earthquake prediction studies, Seismol. Res. Lett., 2019. https://doi.org/10.1785/0220180378

  18. Keilis-Borok, V.I., The lithosphere of the Earth as a nonlinear system with implications for earthquake prediction, Rev. Geophys., 1990, vol. 28, no. 1, pp. 19–34.

    Article  Google Scholar 

  19. Keilis-Borok, V.I. and Kosobokov, V.G., A set of long-term precursors for the strongest earthquakes in the world, Earthquakes and disaster prevention, 27th Int. Geological Congress, August 4–14, 1984, Moscow, Colloquium C6, Moscow: Nauka, 1984, vol. 61, p. 56–66.

  20. Keilis-Borok, V.I. and Kossobokov, V.G., Periods of high probability of occurrence of the world’s strongest earthquakes, Comput. Seismol., vol. 19, New York: Allerton, 1987, pp. 45–53.

  21. Keilis-Borok, V.I. and Kossobokov, V.G., Premonitory activation of seismic flow: algorithm M8, Phys. Earth Planet. Inter, 1990a, vol. 61, pp. 73–83.

    Article  Google Scholar 

  22. Keilis-Borok, V.I., and Kossobokov, V.G., Times of increased probability of strong earthquakes (M ≥ 7.5) diagnosed by algorithm M8 in Japan and adjacent territories, J. Geophys. Res., 1990b, vol. 95, no. B8, pp. 12413–12422.

    Article  Google Scholar 

  23. Keilis-Borok, V.I., Knopoff, L., Kossobokov, V.G., and Rotvain, I.M., Intermediate-term prediction in advance of the Loma Prieta earthquake, Geophys. Res. Lett., 1990a, vol. 17, no. 9, pp. 1461–1464.

    Article  Google Scholar 

  24. Keilis-Borok, V.I., Kossobokov, V.G., and Smith, S.W., Reduction of territorial uncertainty of earthquake forecasting, Phys. Earth Planet. Inter, 1990b, vol. 61, pp. R1–R4.

    Article  Google Scholar 

  25. Kossobokov, V.G., The test of algorithm M8, in Algorithms of Long-Term Earthquake Prediction, Sadovsky, M. A., Ed., Lima: CERESIS, 1986, pp. 42-52.

    Google Scholar 

  26. Kossobokov, V.G., User Manual for M8, Chapter 4 in Algorithms for Earthquake Statistics and Prediction, Healy, J.H., Keilis-Borok, V.I., and Lee, W.H.K., Eds., El Cerrito: IASPEI Software Library and Seismol. Soc. Am., 1997, vol. 6, pp. 167–221, with Disk #4: M8 Programs and Test Data Files.

  27. Kossobokov, V.G., Earthquake prediction: Basics, achievements, perspectives, Acta Geodet.Geophys. Hung., 2004, vol. 39, nos. 2–3, pp. 205–221.

    Article  Google Scholar 

  28. Kossobokov, V., Are mega earthquakes predictable? Izv., Atmos. Oceanic Phys., 2011, vol. 46, no. 8, pp. 951–961. https://doi.org/10.1134/S0001433811080032

    Article  Google Scholar 

  29. Kossobokov, V.G., Earthquake prediction: 20 years of global experiment, Nat. Hazards, 2013, vol. 69, no. 2, pp. 1155–1177. https://doi.org/10.1007/s11069-012-0198-1

    Article  Google Scholar 

  30. Kossobokov, V., Times of Increased probabilities for occurrence of catastrophic earthquakes: 25 years of hypothesis testing in real time, Chapter 18, in Earthquake Hazard, Risk, and Disasters, Wyss, M. and Shroder, J., Eds., London: Elsevier, 2014, pp. 477–504.

  31. Kossobokov, V.G., Testing an earthquake prediction algorithm: The 2016 New Zealand and Chile earthquakes, Pure Appl. Geophys., 2017, vol. 174, no 5, pp. 1845–1854. https://doi.org/10.1007/s00024-017-1543-9

    Article  Google Scholar 

  32. Kossobokov, V.G. and Carlson, J.M., Active zone size vs. activity: A study of different seismicity patterns in the context of the prediction algorithm M8, J. Geophys. Res., 1995, vol. 100, no. B4, pp. 6431–6441.

    Article  Google Scholar 

  33. Kosobokov, V.G. and Mazhkenov, S.A., Times of increased probability of large earthquakes in the Eastern Tien Shan diagnosed by the M8 algorithm, in Computational Seismology and Geodynamics, Chowdhury, D.K., Ed., Washington: AGU, 1994, pp. 16–19.

    Google Scholar 

  34. Kossobokov, V.G. and Nekrasova, A.K., Global Seismic Hazard Assessment Program (GSHAP) Maps are misleading, Probl. Eng. Seismol., 2011, vol. 38, no. 1, pp. 65–76.

    Google Scholar 

  35. Kossobokov, V. and Shebalin, P., Chapter 4, Earthquake prediction, in Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, Keilis-Borok, V.I. and Soloviev, A.A., Eds., Heidelberg: Springer, 2003, pp. 141–207.

  36. Kossobokov, V.G. and Soloviev, A.A., Prediction of extreme events: Fundamentals and prerequisites of verification, Russ. J. Earth Sci., 2008, vol. 10, article ID ES2005. https://doi.org/10.2205/2007ES000251

    Article  Google Scholar 

  37. Kossobokov, V.G. and Soloviev, A.A., Evaluating the results of testing algorithms for prediction of earthquakes, Dokl. Earth Sci., 2015, vol. 460, no. 2, pp. 192–194.

    Article  Google Scholar 

  38. Kossobokov, V.G., Rastogi, B.K., and Gaur, V.K., On self similarity of premonitory patterns in the regions of natural and induced seismicity, Proc. Indian Ac. Sci., (Earth Planet. Sci.), 1989, vol. 98, no. 4, pp. 309–318.

  39. Kossobokov, V.G., Keilis-Borok, V.I., and Smith, S.W., Localization of intermediate term earthquake prediction, J. Geophys. Res., 1990, vol. 95, no. B12, pp. 19763–19772.

    Article  Google Scholar 

  40. Kossobokov, V.G., Healy, J.H., Keilis-Borok, V.I., Dewey, J.W., and Khokhlov, A.V., The test of an intermediate-term earthquake prediction algorithm: the design of real-time monitoring and retroactive application, Dokl. Akad. Nauk, 1992, vol. 325, no 1, pp. 46–48.

    Google Scholar 

  41. Kossobokov, V.G., Healy, J.H., and Dewey, J.W., Testing an earthquake prediction algorithm, Pure Appl. Geophys., 1997, vol. 149, pp. 219–232.

    Article  Google Scholar 

  42. Kossobokov, V.G., Romashkova, L.L., Keilis-Borok, V.I., and Healy, J.H., Testing earthquake prediction algorithms: Statistically significant real-time prediction of the largest earthquakes in the Circum-Pacific, 1992–1997, Phys. Earth Planet. Inter., 1999a, vol. 111, nos. 3–4, pp. 187–196. https://doi.org/10.1016/S0031-9201(98)00159-9

    Article  Google Scholar 

  43. Kossobokov, V.G., Shebalin, P.N., Healy, J.H., Dewey, J.W., and Tikhonov, I.N., A real-time intermediate-term prediction of the October 4, 1994, and December 3, 1995, southern Kuril Islands earthquakes, in Computational Seismology and Geodynamics, Chowdhury, D.K., Ed., Washington: AGU, 1999b, pp. 57–63.

    Google Scholar 

  44. Kossobokov, V.G., Maeda, K., and Uyeda, S., Precursory activation of seismicity in advance of the Kobe, 1995 earthquake, Pure Appl. Geophys., 1999c, vol. 155, pp. 409–423.

    Article  Google Scholar 

  45. Kossobokov, V.G., Keilis-Borok, V.I., Turcotte, D.L., and Malamud, B.D., Implications of a statistical physics approach for earthquake hazard assessment and forecasting, Pure Appl. Geophys., 2000, vol. 157, pp. 2323–2349.

    Article  Google Scholar 

  46. Kossobokov, V.G., Romashkova, L.L., Panza, G.F., and Peresan, A., Stabilizing intermediate-term medium-range earthquake predictions, J. Seismol. Earthquake Eng., 2002, vol. 4, nos. 2–3, pp. 11–19.

    Google Scholar 

  47. Kossobokov, V., Peresan, A., and Panza, G.F., On operational earthquake forecast and prediction problems, Seismol. Res. Lett., 2015, vol. 86, no. 2, pp. 287–290. https://doi.org/10.1785/0220140202

    Article  Google Scholar 

  48. Latoussakis, J. and Kossobokov, V.G., Intermediate term earthquake prediction in the area of Greece: application of the algorithm M8, Pure Appl. Geophys., 1990, vol. 134, no. 2, pp. 261–282.

    Article  Google Scholar 

  49. Mojarab, M., Kossobokov, V., Memarian, H., and Zare, M., An application of earthquake prediction algorithm M8 in eastern Anatolia at the approach of the 2011 Van earthquake, J. Earth Syst. Sci., 2015, vol. 124, pp. 1047–1062. https://doi.org/10.1007/s12040-015-0584-7

    Article  Google Scholar 

  50. Mojarab, M., Memarian, H., Zare, M., and Kossobokov, V., Adjusting the earthquake prediction algorithm M8 for application in Iranian Plateau with special reference to the 16 April 2013, M7.7 Saravan and the 24 September 2013, M7.7 Awaran earthquakes, J. Seismol., 2017, vol. 21, no. 4, pp. 921–940.

    Article  Google Scholar 

  51. Molchan, G.M., Space-time earthquake prediction: the error diagrams, Pure Appl. Geophys., 2010, vol. 167, nos. 8–9, pp. 907–917. https://doi.org/10.1007/s00024-010-0087-z

    Article  Google Scholar 

  52. Molchan, G. and Romashkova, L., Earthquake prediction analysis based on empirical seismic rate: the M8 algorithm, Geophys. J. Int., 2010, vol. 183, no. 3. pp. 1525–1537. https://doi.org/10.1111/j.1365-246X.2010.04810.x

    Article  Google Scholar 

  53. Panza, G.F., Kossobokov, V., Peresan, A., and Nekrasova, A., Chapter 12, Why are the standard probabilistic methods of estimating seismic hazard and risks too often wrong? in Earthquake Hazard, Risk, and Disasters, Wyss, M. and Shroder, J., Eds., London: Elsevier, 2014, pp. 309–357.

  54. Peresan, A., Kossobokov, V., Romashkova, L., and Panza, G.F., Intermediate-term middle-range earthquake predictions in Italy: a review, Earth Sci. Rev., 2005, vol. 69, nos. 1–2, pp. 97–132.

    Article  Google Scholar 

  55. Peresan, A., Kossobokov, V.G., and Panza, G.F. Operational earthquake forecast/prediction, Rend. Fis. Acc. Lincei., 2012, vol. 23, pp. 131–138. https://doi.org/10.1007/s12210-012-0171-7

    Article  Google Scholar 

  56. Romashkova, L.L. and Kossobokov, V.G., Intermediate-term earthquake prediction based on spatially stable clusters of alarms, Dokl. Earth Sci., 2004, vol. 398, no. 7, pp. 947–949.

    Google Scholar 

  57. Romashkova, L.L., Kossobokov, V.G., Panza, G.F., and Costa, G., Intermediate-term prediction of earthquakes in Italy: Algorithm M8, Pure Appl. Geophys., 1998, vol. 152, pp. 37–55.

    Article  Google Scholar 

  58. Schorlemmer, D., Werner, M.J., Marzocchi, W., Jordan, T.H., Ogata, Y., Jackson, D.D., Mak, S., Rhoades, D.A., Gerstenberger, M.C., Hirata, N., et al., The Collaboratory for the Study of Earthquake Predictability: Achievements and priorities, Seismol. Res. Lett., 2018, vol. 89, pp. 1305–1313. https://doi.org/10.1785/0220180053

    Article  Google Scholar 

  59. Updike, R.G., Ed., Proc. Nat. Earthquake Prediction Evaluation Council, June 6–7, 1988. Reston, Virginia, U.S. Geol. Surv. Open-File Report no. 89–144, 1989. https://doi.org/10.3133/ofr89144

  60. Wyss, M., Second round of evaluation of proposed earthquake precursors, Pure Appl. Geophys., 1997, vol. 149, pp. 3–16.

    Article  Google Scholar 

  61. Wyss, M., Nekrasova, A., and Kossobokov, V., Errors in expected human losses due to incorrect seismic hazard estimates, Natural Hazards, 2012, vol. 62, no. 3, pp. 927–935. https://doi.org/10.1007/s11069-012-0125-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. G. Kossobokov or P. D. Shchepalina.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kossobokov, V.G., Shchepalina, P.D. Times of Increased Probabilities for Occurrence of World’s Largest Earthquakes: 30 Years Hypothesis Testing in Real Time. Izv., Phys. Solid Earth 56, 36–44 (2020). https://doi.org/10.1134/S1069351320010061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351320010061

Keywords:

Navigation