Skip to main content
Log in

Problem of Recognition of Strong-Earthquake-Prone Areas: a State-of-the-Art Review

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—The paper addresses almost half a century’s development of pattern recognition algorithms’ application for solving the problem of determination of strong earthquake-prone areas. This approach was named Earthquake-Prone Areas (EPA). The pattern recognition algorithms applied for this purpose, the studied regions, and the methods for assessing the reliability of the obtained results including the theory of dynamic and limit recognition problems are considered. A recently developed alternative method for solving the problem by identifying the clusters of earthquake epicenters is also presented. This method is based on the approaches of the Discrete Mathematical Analysis (DMA) and implemented in the form of the algorithmic system named Formalized Clustering and Zoning (FCAZ). The comparison of the results obtained by the EPA approach and FCAZ system shows their good consistency which provides an additional argument in favor of their reliability. The possibilities for further development and joint application of the EPA approach and FCAZ system and creating, on this basis, an integrated method for systems analysis with the inclusion of artificial intelligence are outlined. In case of success, this method is expected to be used in seismic hazard assessment and planning of earthquake-resistant construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Agayan, S.M., Bogoutdinov, Sh.R., Gvishiani, A.D., Grayeva, E.M., Zlotnicki, J., and Rodkin, M.V., Signal morphology study based on the algorithms of fuzzy logic, Geofiz. Issled., 2005, no. 1, pp. 143–155.

  2. Agayan, S.M., Bogoutdinov, Sh.R., and Dobrovolsky, M.N., Discrete perfect sets and their application in cluster analysis, Cybern. Systems Anal., 2014, vol. 50, no. 2, pp. 176–190. https://doi.org/10.1007/s10559-014-9605-9

    Article  Google Scholar 

  3. Alekseevskaya, M.A., Gabrielov, A.M., Gvishiani, A.D., Gelfand, I.M., and Rantzman, E.Ya., Morphostructural zoning of mountain countries based on formalized features, in Vychislitel’naya seysmologiya, Vyp. 10, Raspoznavanie i spektral’nyi analiz v seismologii (Recognition and Spectral Analysis in Seismology, vol. 10 of Computational Seismology), Keilis-Borok V.I., Ed., Moscow, 1977a, pp. 33−49.

  4. Alekseevskaya, M., Gabrielov, A., Gelfand, I., Gvishiani, A., and Rantsman, E., Formal morphostructural zoning of mountain territories, Geophysics, 1977b, vol. 42, no 2, pp. 227–233.

    Google Scholar 

  5. Artemiev, M.E., Rotvain, I.M., and Sadovskii, A.M., Recognition of strong-earthquake-prone areas: VII. The use of Bouguer gravity anomalies for California and adjacent regions, in Vychislitel’naya seismologiya, Vyp. 10, Raspoznavanie i spektral’nyi analiz v seismologii (Recognition and Spectral Analysis in Seismology, vol. 10 of Computational Seismology), Keilis-Borok V.I., Ed., Moscow, 1977, pp. 19–32.

  6. Bhatia, S.S., Gorshkov, A.I., Rantzman, E.Ya., Rao, M.N., Filimonov, M.B., and Chetti, T.R.K., Recognition of strong-earthquake-prone areas: XVIII. Himalaya (M ≥ 6.5), in Vychislitel’naya seismologiya, Vyp. 25, Problemy prognoza zemletryasenii i interpretatsiya sesmologicheskikh dannykh (Problems of Earthquake Prediction and Interpretation of Seismological Data, vol. 25 of Computational Seismology) Moscow: Nauka, 1992, pp. 71–83.

    Google Scholar 

  7. Bhatia, S.S., Gorshkov, A.I., Rantzman, E.Ya., Rao, M.N., Filimonov, M.B., Chetti, T.R.K., and Shtok, N.V., Recognition of strong-earthquake-prone areas: XIX. Himalaya (M ≥ 7.0), in Vychislitel’naya seismologiya, Vyp. 27, Teoreticheskie problemy geodinamiki i seismologii (Theoretical Problems of Geodynamics and Seismology, vol. 27 of Computational Seismology) Moscow: Nauka, 1994, pp. 280–287.

    Google Scholar 

  8. Bongard, M.M., Recognition Problem, Moscow: Nauka, 1967.

    Google Scholar 

  9. Bongard, M.M., Vaintsvaig, M.N., Guberman, S.A., Izvekova, M.L., and Smirnov, M.S., Using a learning program for identifying oil reservoirs, Geol. Geofiz., 1966, vol. 2, no. 6, pp. 15–29.

    Google Scholar 

  10. Caputo, M., Keilis-Borok, V., Oficerova, E., Ranzmsn, E., Rotvain, I., and Soloviev, A., Pattern recognition of earthquake-prone areas in Italy, Phys. Earth Planet. Inter., 1980, vol. 21, no. 4, pp. 305–320. https://doi.org/10.1016/0031-9201(80)90135-1

    Article  Google Scholar 

  11. Cisternas, A., Godefroy, P., Gvishiani, A, Gorshkov, A., Kosobokov, V., Lambert, M., Ranzman, E., Sallantin, J., Saldano, H., Soloviev, A., Weber, C., A dual approach to recognition of earthquake prone areas in the Western Alps, Ann. Geophys., 1985, vol. 3, no. 2, pp. 249–270.

    Google Scholar 

  12. Dubois, J. and Gvishiani, A., Dynamic Systems and Dynamic Classification Problems in Geophysical Applications, Paris: Springer, 1998. https://doi.org/10.1007/978-3-642-49951-7

    Book  Google Scholar 

  13. Dzeboev, B.A., A new approach to monitoring seismic activity: California case study, Dokl. Earth Sci., 2017, vol. 473, no. 1, pp. 338–341. https://doi.org/10.1134/S1028334X17030126

    Article  Google Scholar 

  14. Dzeboev, B.A. and Krasnoperov, R.I., On the monitoring of seismic activity using the algorithms of discrete mathematical analysis, Russian J. Earth Sciences(RJES), 2018, vol. 18, ES3003. https://doi.org/10.2205/2018ES000623

    Article  Google Scholar 

  15. Dzeboev, B.A., Agayan, S.M., Zharkikh, Yu.I., Krasnoperov, R.I., and Barykina, Yu.V., Strongest earthquake-prone areas in Kamchatka, Izv.,Phys. Solid Earth, 2018a, vol. 54, no. 2, pp. 284–291. https://doi.org/10.1134/S1069351318020052

    Article  Google Scholar 

  16. Dzeboev, B.A., Krasnoperov, R.I., Belov, I.O., Barykina, Yu.I., and Vavilin, E.V., Modified algorithmic system FCAZm and strong earthquake-prone areas in California, Geoinformatika, 2018b, no. 2, pp. 2–8.

  17. Dzeboev, B.A., Gvishiani, A.D., Belov, I.O., Agayan, S.M., Tatarinov, V.N., and Barykina, Yu.V., Strong-earthquake-prone areas recognition based on an algorithm with a single pure training class: I. Altai–Sayan–Baikal region, M ≥ 6.0, Izv.,Phys. Solid Earth, 2019b, vol. 55, no. 4, p. 563–575. https://doi.org/10.1134/S1069351319040050

    Article  Google Scholar 

  18. Gabrielov A.M., Gorshkov V.I., Rantsman E.Ya. The experience of morphostructural zoning based on formalized features, in Vychislitel’naya seismologiya. Vyp. 10, Raspoznavanie i spektral’nyi analiz v seismologii (Recognition and Spectral Analysis in Seismology, vol. 10 of Computational Seismology), Keilis-Borok,a V.I., Ed., Moscow: Nauka, 1977, pp. 50−58.

  19. Gabrielov, A.M., Gvishiani, A.D., and Zhidkov, M.P., Formalized morphostructural classification of the Andes mountain belt, in Vychislitel’naya seismologiya. Vyp. 14, Matematicheskie modeli stroeniya Zemli i prognoza zemletryasenii (Mathematical Models of the Structure of the Earth and Earthquake Prediction, Vol. 14 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1982, pp. 38–56.

  20. Gelfand, I.M., Guberman, Sh.A., Izvekova, M.L., Keilis-Borok, V.I., and Rantzman, E.Ya., On the criteria of high seismicity, Dokl. Akad. Nauk SSSR, 1972a, vol. 202, no. 6, pp. 1317–1320.

    Google Scholar 

  21. Gelfand, I.M., Guberman, Sh.A., Izvekova, M.L., Keilis-Borok, V.I., and Ranzman, E.Ya., Criteria of high seismicity determined by pattern recognition, Tectonophysics, 1972b, vol. 13, nos. 1–4, pp. 415–422. https://doi.org/10.1016/0040-1951(72)90031-5

    Article  Google Scholar 

  22. Gelfand, I.M., Guberman, Sh.A., Izvekova, M.L., Keilis-Borok, V.I., and Rantzman, E.Ya., Recognition of the strong earthquake prone areas. I. Pamir and Tien-Shan, in Vychislitel’naya seismologiya. Vyp. 6, Vychislitel’nye i statisticheskie metody interpretatsii seismicheskikh dannykh (Computational and Statistical Methods for Interpretation of Seismic Data, vol. 6 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1973a, pp. 107–133.

  23. Gelfand, I.M., Guberman, Sh.A., Zhidkov, M.P., Keilis-Borok, V.I., Rantzman, E.Ya., and Rotvain, I.M., Determination of criteria for high seismicity using recognition algorithms, Vestn. MGU, 1973b, no. 5, pp. 78–84.

  24. Gelfand, I.M., Guberman, Sh.A., Zhidkov, M.P., Kaletskaya, M.S., Keilis-Borok, V.I., and Rantzman, E.Ya., The experience of transferring high seismicity criteria from Central Asia to Anatolia and adjacent regions, Dokl. Akad. Nauk SSSR, 1973c, vol. 210, no. 2, pp. 327–330.

    Google Scholar 

  25. Gelfand, I.M., Guberman, Sh.A., Zhidkov, M.P., Kaletskaya, M.S., Keilis-Borok, V.I., Rantsman, E.Ya., and Rotvain, I.M., Recognition of the strong earthquake prone areas: II. Four regions of Asia Minor and Southeast Europe, in Vychislitel’naya seismologiya, Vyp. 7, Mashinnyi analiz tsifrovykh seismicheskikh dannykh (Machine Analysis of Digital Seismic Data, vol. 7 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1974a, pp. 3–40.

  26. Gelfand, I.M., Guberman, Sh.A., Zhidkov, M.P., Keilis-Borok, V.I., Rantzman, E.Ya., and Rotvain, I.M., Recognition of strong-earthquake-prone areas: III. The case when the boundaries of the disjunctive knots are unknown, in Vychislitel’naya seismologiya, Vyp. 7, Mashinnyi analiz tsifrovykh seismicheskikh dannykh (Machine Analysis of Digital Seismic Data, vol. 7 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1974b, pp. 41–64.

  27. Gelfand, I.M., Guberman, Sh.A., Keilis-Borok, V.I., Knopoff, L., Press, F.S., Rantzman, E.Ya., Rotvain, I.M., and Sadovskii, A.M., Criteria of the origin of strong earthquakes (California and some other regions), in Vychislitel’naya seismologiya. Vyp. 9, Issledovanie seismichnosti i modelei Zemli (Study of Seismicity and Models of the Earth, vol. 9 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1976a, pp. 3–91.

  28. Gelfand, I.M., Guberman, Sh.A., Keilis-Borok, V.I., Knopoff, L., Press, F.S., Ranzman, E.Ya., Rotwain, I.M., and Sadovsky, A.M., Pattern recognition applied to earthquake epicenters in California, Phys. Earth Planet. Inter., 1976b, vol. 11, no. 3, pp. 227–283. https://doi.org/10.1016/0031-9201(76)90067-4

    Article  Google Scholar 

  29. Gerasimov, I.P., Experience of geomorphological interpretation of the general scheme of the USSR geological structure, in Problemy fizicheskoi geografii (Problems of Physiography), vol. 12, Moscow–Leningrad: izd. AN SSSR, 1946, pp. 33–46.

  30. Gerasimov, I.P. and Rantzman, E.Ya., Morphostructure of mountain countries and their seismicity, Geomorfologiya, 1973, no. 1, pp. 3–18.

  31. Gorshkov, A.I., Using the results of recognition of earthquake-prone regions for seismic zoning (case study for the Caucasus), in Seismichnost’ i seismicheskoe raionirovanie Severnoi Evrazii (Seismicity and Seismic Zoning of Northern Eurasia), vol. 1, Moscow: IFZ RAN, 1993, pp. 207–216.

  32. Gorshkov, A.I., Recognition of strong-earthquake-prone areas in Alpine–Himalaya belt, in Vychislitel’naya seismologiya, Vyp. 40, Algoritmy prognoza zemletryasenii (Algorithms for Predicting Earthquakes: vol. 40 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow: KRASAND, 2010.

  33. Gorshkov, A. and Novikova, O., Estimating the validity of the recognition results of earthquake-prone areas using the ArcMap, Acta Geophysica, 2018, vol. 66, no. 5, pp. 843–853. https://doi.org/10.1007/s11600-018-0177-3

    Article  Google Scholar 

  34. Gorshkov, A.I. and Novikova, O.V., Recognition of earthquake-prone areas (M ≥ 6.0) in the Caspian region: Kopetdagh–Aladagh–Binalud, Geofiz. Issled., 2012, vol. 13, no. 1, pp. 29–38.

    Google Scholar 

  35. Gorshkov, A.I. and Soloviev, A.A., Recognition of possible locations of future M ≥ 6.0 earthquakes: the Mediterranean mountain belts, J. Volcanol. Seismol., 2009, vol. 3, no. 3, pp. 210–219.

    Article  Google Scholar 

  36. Gorshkov, A.I., Caputo, M., Keilis-Borok, V.I., Ofitserova, E.I., Rantsman, E.Ya., and Rotvain, I.M., Recognition of strong-earthquake-prone areas, IX, Italy, M ≥ 6.0, in Vychislitel’naya seismologiya. Vyp. 12, Teoriya i analiz seismologicheskikh nablyudenii (Theory and Analysis of Seismological Observations, vol. 12 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1979, pp. 3–17.

  37. Gorshkov, A.I., Zelevinskii, A.V., and Rantsman, E.Ya., Recognition of strong-earthquake-prone areas. XI. Western Alps, M ≥ 5.0, in Vychislitel’naya seismologiya. Vyp. 15, Prognoz zemletryasenii i izuchenie stroeniya Zemli (Earthquake Forecasting and Study of the Structure of the Earth, vol. 15 of Computational Seismology), Keilis-Borok, V.I., Eds., Moscow: Nauka, 1982, pp. 67–73.

  38. Gorshkov, A.I., Zhidkov, M.P., Rantsman, E.Ya., and Tumarkin, A.G., Morphotructure of Lesser Caucasus and locations of earthquakes, M ≥ 5.5, Izv. Akad. Nauk SSSR,Fiz. Zemli, 1991, no. 6, pp. 30–38.

  39. Gorshkov, A.I., Kuznetsov, I.V., Soloviev, A.A., and Panza, G.F., Identification of future earthquake sources in the Carpatho-Balkan orogenic belt using morphostuctural criteria, Pure Appl. Geophys., 2000, vol. 157, nos. 1–2, pp. 79–95. https://doi.org/10.1007/PL00001101

    Article  Google Scholar 

  40. Gorshkov, A.I., Panza, G.F., Soloviev, A.A., and Aoudia, A., Morphostructural zonation and preliminary recognition of seismogenic nodes around the Adria margin in peninsular Italy and Sicily, J. Seismol. Earthquake Eng., 2002, vol. 4, no. 1, pp. 1–24.

    Google Scholar 

  41. Gorshkov, A.I., Piotrovskaya, E.P., and Rantsman, E.Ya., Recognition of strong-earthquake-prone areas: XXX. Turkmen–Khorasan Mountains, M ≥ 6.5, in Vychislitel’naya seismologiya. Vyp. 15, Problemy teoreticheskoi seismologii i seismichnosti (Problems of Theoretical Seismology and Seismicity, vol. 33 of Computational Seismology), Moscow: GEOS, 2002, pp. 129–140.

    Google Scholar 

  42. Gorshkov, A., Kossobokov, V., and Soloviev, A., Recognition of earthquake-prone areas, in Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, Keilis-Borok, V. and Soloviev, A., Eds., Heidelberg: Springer, 2003a, pp. 239–310. https://doi.org/10.1007/978-3-662-05298-3_6

    Google Scholar 

  43. Gorshkov, A.I., Panza, G.F., Soloviev, A.A., and Aoudia, A., Recognition of the strong earthquake-prone areas (M ≥ 6.0) within the mountain belts of Central-Europe, Revue Roumaine de Geophysique, 2003b, vol. 47, pp. 30–41.

    Google Scholar 

  44. Gorshkov, A.I., Soloviev, A.A., Panza, G.F., and Aoudia, A., Identification of seismogenic nodes in the Alps and Dinarides, Societa Geologica Italiana.Bollettino, 2004, vol. 123 no. 1, pp. 3–18.

    Google Scholar 

  45. Gorshkov, A.I., Soloviev, A.A., Jiménez, M.J., García-Fernández, M. and Panza, G.F., Recognition of earthquake-prone areas (M ≥ 5.0) in the Iberian Peninsula, Rendiconti Lincei, 2010, vol. 21, no. 2, pp. 131–162. https://doi.org/10.1007/s12210-010-0075-3

    Article  Google Scholar 

  46. Gorshkov, A., Novikova, O., and Parvez, I.A., Recognition of earthquake-prone areas in the Himalaya: validity of the results, Int. J. Geophys., 2012. https://doi.org/10.1155/2012/419143

  47. Gorshkov, A.I., Soloviev, A.A., and Zharkikh, Yu.I., A morphostructural zoning of the Mountainous Crimea and the possible locations of future earthquakes, J. Volcanol. Seismol., 2017, vol. 11, no. 6, pp. 407–413. https://doi.org/10.1134/S0742046317060021

    Article  Google Scholar 

  48. Gorshkov, A.I., Soloviev, A.A., and Zharkikh, Yu.I., A morphostructural zoning of the Mountainous Crimea and the possible locations of future earthquakes, J. Volcanol. Seismol., 2017, vol. 11, no. 6, pp. 407–413. https://doi.org/10.1134/S0742046317060021

    Article  Google Scholar 

  49. Gorshkov, A.I., Soloviev, A.A., and Zharkikh, Yu.I., Recognition of strong earthquake prone areas in the Altai–Sayan–Baikal Region, Dokl. Earth Sci., 2018, vol. 479, no. 1, pp. 412–414. https://doi.org/10.1134/S1028334X1803025X

    Article  Google Scholar 

  50. Gvishiani, A.D., Prevision des tremblements de terre et stabilite de la classification, Comptes rendus de l’Académie des Sciences, 1982a, vol. 294, no. 11, pp. 749–752.

  51. Gvishiani, A.D., Time stability of the prediction of strong-earthquake-prone areas: I. Southeastern Europe and Asia Minor, Izv. Akad. Nauk SSSR,Fiz. Zemli, 1982b, no. 8, pp. 13–19.

  52. Gvishiani, A.D. and Dubois, J.O., Artificial intelligence and dynamic systems for geophysical applications, Berlin: Springer, 2002. https://doi.org/10.1007/978-3-662-04933-4

    Book  Google Scholar 

  53. Gvishiani, A.D. and Dzeboev, B.A., Seismic hazard assessment in selecting a site for radioactive waste disposal, Gorn. Zh., 2015, no. 10, pp. 39–43. https://doi.org/10.17580/gzh.2015.10.07

  54. Gvishiani, A.D. and Gurvich, V.A., Dynamic problems of pattern recognition: I. Stability conditions for forecasting strong earthquake prone areas, in Vychislitel’naya seismologiya, Vyp. 16, Matematicheskoe modelirovanie i interpretatsiya geofizicheskikh dannykh (Mathematical Modeling and Interpretation of Geophysical Data, Vol. 16 of Computational Seismology),Keilis-Borok, V.I., Eds., Moscow: Nauka, 1983a, pp. 70–88.

  55. Gvishiani, A.D. and Gurvich, V.A., Dual systems of sets and their applications, Izv. Akad. Nauk SSSR, Tekhn. Kibern., 1983b, no. 4, pp. 31−39.

  56. Gvishiani, A.D. and Gurvich, V.A., Time stability of a prediction of sites of strong earthquakes: II. The eastern part of Central Asia, Izv. Acad. Sci. USSR,Phys. Earth, 1983c, vol. 18, no. 9, pp. 665–671.

    Google Scholar 

  57. Gvishiani, A.D. and Gurvich, V.A., Dynamic pattern recognition problems: II. Stabilizing sets and local stability of the forecast of strong-earthquake-prone areas, in Vychislitel’naya seismologiya, Vyp. 17, Logicheskie i vychislitel’nye metody v seismologii (Logical and Computational Methods in Seismology, vol. 17 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1984, pp. 29–36.

  58. Gvishiani, A.D. and Gurvich, V.A., Dinamicheskie zadachi klassifikatsii i vypukloe programmirovanie v prilozheniyakh (Dynamical Problems of Classification and Convex Programming: Applications), Moscow: Nauka, 1992.

  59. Gvishiani, A. and Kossobokov, V., Interpretation of the results on recognition of earthquake-prone areas, Izv. Akad. Nauk SSSR,Fiz. Zemli, 1981, vol. 2, pp. 21–36.

    Google Scholar 

  60. Gvishiani, A.D. and Kossobokov, V.G., On selecting the magnitude for the classification of the strongest-earthquake-prone areas in the Pacific seismic belt, in Vychislitel’naya seismologiya, Vyp. 15, Prognoz zemletryasenii i izuchenie stroeniya Zemli (Earthquake Prediction and Study of the Earth’s Structure, vol. 15 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1983, pp. 74–80.

  61. Gvishiani, A.D. and Soloviev, A.A., On the confinement the epicenters of strong earthquakes to the interactions of morphostructural lineaments in South America, in Vychislitel’naya seismologiya, Vyp. 13, Metody i algoritmy interpretatsii seismologicheskikh dannykh (Interpretation of Seismological Data: Methods and Algorithms, vol. 13 of Computational Seismology), Keilis-Borok, V.I. and Levshin, A.L., Eds., New York: Allerton, 1981a, pp. 42–48.

    Google Scholar 

  62. Gvishiani, A.D. and Soloviev, A.A., Study of areas prone to earthquakes with magnitude M ≥ 7.75 on the Pacific coast of South America, Dokl. Akad. Nauk SSSR, 1981b, vol. 256, no. 5, pp. 1089–1093.

    Google Scholar 

  63. Gvishiani, A.D. and Soloviev, A.A., On the solution of the problem of forecasting the strong- earthquake-prone areas on the Pacific coast of South America, Izv. Akad. Nauk SSSR,Fiz. Zemli, 1982, no. 1, pp. 86–87.

  64. Gvishiani, A.D., Zelevinskii, A.V., Keilis-Borok, V.I., and Kossobokov, V.G., Study of the strongest-earthquake-prone areas in the Pacific belt by the recognition algorithms, Izv. Akad. Nauk SSSR,Fiz. Zemli, 1978, no. 8, pp. 31–42.

  65. Gvishiani, A.D., Zelevinsky, A.V., Keilis-Borok, V.I., and Kosobokov, V.G., Recognition of the strongest-earthquake-prone areas of the Pacific belt (M ≥ 8.2), in Vychislitel’naya seysmologiya, Vyp. 13, Metody i algoritmy interpretatsii seysmologicheskikh dannykh (Interpretation of Seismological Data: Methods and Algorithms, vol. 13 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1980a, pp. 30–43.

  66. Gvishiani, A.D., Gelfand, I.M., Guberman, Sh.A., Keilis-Borok, V.I., Rantzman E.Ya., Rotvain, I.M., and Sadovskii, A.M., Prediction of the Forecast of the strong-earthquake-prone areas, in Seismicheskoye rayonirovanie territorii SSSR (Seismic Zoning of the USSR), Moscow: Nauka, 1980b, pp. 45–47.

  67. Gvishiani, A.D., Zhidkov, M.P., and Soloviev, A.A., Recognition of strong-earthquake-prone areas: X. M 7.75 earthquake prone areas on the Pacific Coast of South America, in Vychislitel’naya seismologiya. Vyp. 14, Matematicheskie modeli stroeniya Zemli i prognoz zemletryasenii (Mathematical Models of the Structure of the Earth and the Earthquake Prediction, Vol. 14 of Computational Seismology), Keilis-Borok, V.I., Ed., New York: Allerton, 1983, pp. 56–68.

    Google Scholar 

  68. Gvishiani, A.D., Sallanten, J., Saldano, A., Cisternas, A., and Soloviev, A.A., Results of Soviet-French studies on the recognition of dangerous seismic zones in Western Alps, Dokl. Akad. Nauk SSSR, 1984a, vol. 275, no. 6, pp. 1353–1358.

    Google Scholar 

  69. Gvishiani, A.D., Zhidkov, M.P., and Soloviev, A.A., On transferring the criteria of high seismicity of Andean mountain belt to Kamchatka, Izv. Akad. Nauk SSSR,Fiz. Zemli, 1984b, no. 1, pp. 20–33.

  70. Gvishiani, A.D., Gurvich, V.A., and Rastsvetaev, A.L., Dynamic problems of pattern recognition: III. Stability of the forecast of strongest-earthquake-prone areas in the Pacific mobile belt, in Vychislitel’naya seismologiya. Vyp. 18, Teoriya i analiz seismologicheskoi informatsii (Theory and analysis of seismological information, Vol. 18 of Computational seismology), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1985, pp. 117–127.

  71. Gvishiani, A.D., Gorshkov, A.I., Kossobokov, V.G., and Rantzman, E.Ya., Morphostructures and locations of the earthquakes of Greater Caucasus, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1986, no. 9, pp. 45–55.

  72. Gvishiani, A., Gorshkov, A., Kossobokov, V., Cisternas, A., Philip, H., and Weber, C., Identification of seismically dangerous zones in the Pyrenees, Ann. Geophys., 1987a, vol. 5B, no. 6, pp. 681–690.

    Google Scholar 

  73. Gvishiani, A.D., Gorshkov, A.I., Kossobokov, V.G., Cisternas, A., and Philip, E., Recognition of strong earthquake prone areas: XIV. Pyrenees and Alps, M ≥ 5.0, in Vychislitel’naya seismologiya. Vyp. 20, Chislennoe modelirovanie i analiz geofizicheskikh protsessov (Numerical Simulation and Analysis of Geophysical Processes, Vol. 20 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow, 1987b, pp. 123–135.

  74. Gvishiani, A.D., Gorshkov, A.I., and Kosobokov, V.G., Recognition of highly seismic zones in the Pyrenees, Dokl. Akad. Nauk SSSR, 1987c, vol. 292, no. 1, pp. 56–59.

    Google Scholar 

  75. Gvishiani, A.D., Gorshkov, A.I., Rantzman, E.Ya., Cisternas, A, and Soloviev, A.A., Prognozirovanie mest zemletryasenii v regionakh umerennoi seismichnosti (Forecasting the Earthquake-Prone Areas in the Regions of Moderate Seismicity), Moscow: Nauka, 1988a.

  76. Gvishiani, A.D., Gorshkov A.I., Tumarkin A.G., and Filimonov, M.B., Recognition of strong earthquake prone areas: XVI. General criteria of moderate seismicity for four regions in the Mediterranean region (M ≥ 5.0), in Vychislitel’naya seismologiya, Vyp. 21, Problemy seismologicheskoi informatiki (Problems of Seismological Informatics, vol. 21 of Computational Seismology), Keilis-Borok, V.I., Moscow: Nauka, 1988b, pp. 211−221.

    Google Scholar 

  77. Gvishiani, A.D., Gorshkov, A.I., Zhidkov, M.P., Rantzman, E.Ya., and Troussov, A.V., Recognition of places where strong earthquakes may occur. XV. Morphostructural knots of the Great Caucasus, M ≥ 5.5, in Vychislitel’naya seismologiya. Vyp. 20, Chislennoe modelirovanie i analiz geofizicheskikh protsessov (Numerical Modeling and Analysis of Geophysical Processes, Vol. 20 of Computational Seismology), Keilis-Borok, V.I., Ed., New York: Allerton, 1988c, pp. 131–143.

    Google Scholar 

  78. Gvishiani, A.D., Agayan, S.M., and Bogoutdinov, Sh.R., Mathematical methods of geoinformatics: I. A new approach to clusterization, Cybern. Syst. Anal., 2002a, no. 2, pp. 238–254.

  79. Gvishiani, A.D., Diament, M., Mikhailov, V.O., Galdeano, A., Agayan, S.M., Bogoutdinov, Sh.R., and Graeva, E.M., Artificial intelligence algorithms for magnetic anomaly clustering, Izv.,Phys. Solid Earth, 2002b, vol. 38, no. 7, pp. 535–550.

    Google Scholar 

  80. Gvishiani, A.D., Agayan, S.M., Bogoutdinov, Sh.R., Tikhotsky, S.A., Hinderer, J., Bonnin, J., and Diament, M., Algorithm FLARS and recognition of time series anomalies, Syst.Res. Inf. Technol., 2004, no. 3, pp. 7−16.

  81. Gvishiani, A.D., Agayan, S.M., and Bogoutdinov, Sh.R., Discrete mathematical analysis and monitoring of volcanoes, Inzh. Ekol., 2008a, no. 5, pp. 26–31.

  82. Gvishiani, A.D., Agayan, S.M., Bogoutdinov, Sh.R., Zlotnicki, J., and Bonnin, J., Mathematical methods of geoinformatics. III. Fuzzy comparisons and recognition of anomalies in time series, Cybern. Syst. Anal., 2008b, vol. 44, no. 3, pp. 309–323.

    Article  Google Scholar 

  83. Gvishiani, A.D., Belov, S.V., Agayan, S.M., Rodkin, M.V., Morozov, V.N., Tatarinov, V.N., and Bogoutdinov, Sh.R., Geo-information technologies: artificial intelligence methods in the assessment of tectonic stability of Nizhnekanskii Massif, Inzh. Ekol., 2008c, no. 2, pp. 3–14.

  84. Gvishiani, A.D., Agayan, S.M., Bogoutdinov, Sh.R., and Soloviev, A.A., Discrete mathematical analysis and applications in geology and geophysics, Vestn. KRAUNTs, Nauki Zemle, 2010, no. 2, pp. 109–125.

  85. Gvishiani, A.D., Agayan, S.M., Dobrovolsky, M.N., and Dzeboev, B.A., Objective epicenter classification and recognition of strong-earthquake-prone areas in California, Geoinformatika, 2013a, no. 2, pp. 44–57.

  86. Gvishiani, A.D., Dzeboev, B.A., and Agayan, S.M., A new approach to recognition of the strong earthquake-prone areas in the Caucasus, Izv.,Phys. Solid Earth, 2013c, vol. 49, no. 6, pp. 747–766. https://doi.org/10.1134/S1069351313060049

    Article  Google Scholar 

  87. Gvishiani, A., Dobrovolsky, M., Agayan, S., and Dzeboev, B., Fuzzy-based clustering of epicenters and strong earthquake-prone areas, Environ. Eng. Manage. J., 2013b, vol. 12, no 1, pp. 1−10.

    Article  Google Scholar 

  88. Gvishiani, A.D., Dzeboev, B.A., and Agayan, S.M., FCAZm intelligent recognition system for locating areas prone to strong earthquakes in the Andean and Caucasian mountain belts, Izv.,Phys. Solid Earth, 2016, vol. 52, no. 4, pp. 461–481. https://doi.org/10.1134/S1069351316040017

    Article  Google Scholar 

  89. Gvishiani, A.D., Agayan, S.M., Dzeboev, B.A., and Belov, I.O., Recognition of strong earthquake–prone areas with a single learning class, Dokl. Earth Sci., 2017a, vol. 474, no. 1, p. 546. https://doi.org/10.1134/S1028334X17050038

    Article  Google Scholar 

  90. Gvishiani, A.D., Dzeboev, B.A., Belov, I.O., Sergeeva, N.A., and Vavilin, E.V., Successive recognition of significant and strong earthquake-prone areas: The Baikal–Transbaikal region, Dokl. Earth Sci., 2017b, vol. 477, no. 2, pp. 1488–1493. https://doi.org/10.1134/S1028334X1712025X

    Article  Google Scholar 

  91. Gvishiani, A.D., Dzeboev, B.A., Sergeyeva, N.A., and Rybkina, A.I., Formalized clustering and significant earthquake-prone areas in the Crimean Peninsula and Northwest Caucasus, Izv.,Phys. Solid Earth, 2017c, vol. 53, no. 3, pp. 353–362. https://doi.org/10.1134/S106935131703003X

    Article  Google Scholar 

  92. Gvishiani, A.D., Dzeboev, B.A., Sergeeva, N.A., Belov, I.O., and Rybkina, A.I., Significant earthquake-prone areas in the Altai–Sayan Region, Izv.,Phys. Solid Earth, 2018, vol. 54, no. 3, pp. 406–416. https://doi.org/10.1134/S1069351318030035

    Article  Google Scholar 

  93. Gvishiani, A., Dzeboev, B., and Nekhoroshev, S., Recognition of Earthquake-Prone Areas for Seismic Hazard Evaluation, Disaster and Risk Research, GADRI Book Series, 2019.

    Google Scholar 

  94. Keilis-Borok, V.I., Seismology and logic, in Vychislitel’naya seismologiya. Vyp. 4, Nekotorye pryamye i obratnye zadachi seismologii (Some Direct and Inverse Problems of Seismology, vol. 4 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1968.

  95. Kossobokov, V.G., Experience of transferring the criteria of high seismicity (M ≥ 8.2) from the Pacific belt to the Alpine belt, in Vychislitel’naya seismologiya, Vyp. 13, Metody i algoritmy interpretatsii seismologicheskikh dannykh (Methods and Algorithms for Interpretation of Seismological Data, vol. 13 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1980.

  96. Kossobokov, V.G., Recognition of strong-earthquake-prone areas in the east of Central Asia and Anatolia by Hamming method, in Vychislitel’naya seismologiya, Vyp. 14, Modeli stroeniya Zemli i prognoza zemletryasenii (Models of the Earth’s Structure and Earthquake Forecasting, vol. 14 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1982.

  97. Kossobokov, V.G. and Rotvain, I.M., Recognition of strong-earthquake-prone areas: VI. Magnitude M ≥ 7.0, in Vychislitel’naya seismologiya, Vyp. 10, Raspoznavanie i spektral’nyi analiz v seismologii (Recognition and Spectral Analysis in Seismology, vol. 10 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1977, pp. 3–18.

  98. Kossobokov, V.G. and Soloviev, A.A., Disposition of epicenters of earthquakes with M ≥ 5.5 relative to the intersection of morphostructural lineaments in the East Central Asia, in Vychislitel’naya seismologiya. Vyp. 14, Matematicheskie modeli stroeniya Zemli i prognoza zemletryasenii (Mathematical Models of the Structure of the Earth and the Earthquake Prediction, vol. 14 of Computational Seismology), Keilis-Borok, V.I. and Levshin, A.L., Eds., New York: Allerton, 1983, pp. 75–77.

    Google Scholar 

  99. Kossobokov, V.G. and Soloviev, A.A., Pattern recognition in problems of seismic hazard assessment, Chebyshev. Sb., 2018, vol. 19, no. 4, pp. 53–88. https://doi.org/10.22405/2226-8383-2018-19-4-55-90

    Article  Google Scholar 

  100. Novikova, O.V. and Gorshkov, A.I., High seismicity intersections of morphostructural lineaments: the Black-Sea–Caspian region, J. Volcanol. Seismol., 2018, vol. 12, no. 6, pp. 379–388. https://doi.org/10.1134/S0742046318060064

    Article  Google Scholar 

  101. Panza, G.F., Peresan, A., Vaccari, F., Romashkova, L., Kossobokov, V., Gorshkov, A., and Kuznetsov, I., Earthquake preparedness: the contribution of earthquake prediction and deterministic hazard research, in Terratremols I temporals de llevant: dos exemples de sistemes complexos, Correig, A., Ed., Sèrie jornades científiques 15, Jornades Científiques de l’Institut d’Estudis Catalans, Secció de Ciències i Tecnologia, Barcelona, 2003, pp. 91–116.

  102. Peresan, A., Zuccolo, E., Vaccari, F., Gorshkov, A., and Panza, G.F., Neo-deterministic seismic hazard and pattern recognition techniques: Time-dependent scenarios for North-Eastern Italy, Pure Appl. Geophys., 2011, vol. 168, nos. 3–4, pp. 583–607. https://doi.org/10.1007/s00024-010-0166-1

    Article  Google Scholar 

  103. Peresan, A., Gorshkov, A., Soloviev, A., Panza, G.F., The contribution of pattern recognition of seismic and morphostructural data to seismic hazard assessment, Bollettino Di Geofisica Teorica Ed Applicata, 2015, vol. 56, no. 2, pp. 295–328. https://doi.org/10.4430/bgta0141

    Article  Google Scholar 

  104. Rantsman, E.Ya., Mesta zemletryasenii i morfostruktura gornykh stran (Locations of Earthquakes and Morphological Structure of Mountain Countries), Moscow: Nauka, 1979.

  105. Rantsman, E.Ya. and Glasko, M.P., Morfostrukturnye uzly—mesta ekstremal’nykh prirodnykh yavlenii (Morphostructural Nodes are Locations of Extreme Natural Phenomena), Moscow: Media-Press, 2004.

  106. Sallantin, J., Methodologie de l’apprentissage pour des variables binaries, Publ.Struc. Infor. C.N.R.S. P., 1983, pp. 13–25.

    Google Scholar 

  107. Soloviev, An., Chulliat, A., Bogoutdinov, Sh., Gvishiani, A., Agayan, S., Peltier, A., and Heumez, B., Automated recognition of spikes in 1 Hz data recorded at the Easter Island magnetic observatory, Earth Planets Space, 2012, vol. 64, no. 9, pp. 743–752. https://doi.org/10.5047/eps.2012.03.004

    Article  Google Scholar 

  108. Soloviev, A.A., Novikova, O.V., Gorshkov, A.I., and Piotrovskaya, E.P., Recognition of potential sources of strong earthquakes in the Caucasus region using GIS technologies, Dokl. Earth Sci., 2013, vol. 450, no. 2, pp. 658–660. https://doi.org/10.1134/S1028334X13060159

    Article  Google Scholar 

  109. Soloviev, A.A., Gvishiani, A.D., Gorshkov, A.I., Dobrovolsky, M.N., and Novikova, O.V., Recognition of earthquake-prone areas: methodology and analysis of the results, Izv.,Phys. Solid Earth, 2014, vol. 50, no. 2, pp. 151–168. https://doi.org/10.1134/S1069351314020116

    Article  Google Scholar 

  110. Soloviev, Al.A., Gorshkov, A.I. and Soloviev, An.A., Application of the data on the lithospheric magnetic anomalies in the problem of recognizing the earthquake prone areas, Izv.,Phys. Solid Earth, 2016, vol. 52, no. 6, pp. 803–809. https://doi.org/10.1134/S1069351316050141

    Article  Google Scholar 

  111. Soloviev, An.A., Soloviev, Al.A., Gvishiani, A.D., Nikolov, B.P., and Nikolova, Yu.I., GIS-oriented database on seismic hazard assessment for Caucasian and Crimean regions, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 9, pp. 1363–1373. https://doi.org/10.1134/S0001433818090505

    Article  Google Scholar 

  112. Vaintsvaig, M.N., Learning algorithm for pattern recognition “Cora”, in Algoritmy obucheniya raspoznavaniyu obrazov (Pattern Recognition Learning Algorithms), Moscow: Sov. Radio, 1973, pp. 8–12.

  113. Weber, K., Gorshkov, A.I., and Rantzman, E.Ya., Morphostructural lineaments and strong earthquakes of Western Alps, in Vychislitel’naya seismologiya, Vyp. 14, Matematicheskie modeli stroeniya Zemli i prognoza zemletryasenii (Mathematical Models of the Earth’s Structure and Earthquake Prediction, vol. 14 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1981, pp. 67–73.

  114. Weber, K., Gvishiani, A.D., Godefroy, P., Gorshkov, A.I., Kossobokov, V.G., Lambert, J., Rantzman, E.Ya., Sallantin, J., Soldano, A., Cisternas, A., and Soloviev, A.A., Recognition of strong-earthquake-prone areas: XII. Two approaches to recognition of strong earthquakes in Western Alps, in Vychislitel’naya seismologiya, Vyp. 18, Teoriya i analiz seismicheskoi informatsii (Theory and Analysis of Seismological Information, vol. 18 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1986a, pp. 132–154.

  115. Weber, K., Gvishiani, A.D., Godefroy, P., Gorshkov, A.I., Kushnir, A., Pisarenko, V.F., Cisternas, A., Trusov, A.V., Tsvang, M.L., and Tsvang, S.L., On the classification of highly seismic zones in Western Alps, Izv. Akad. Nauk SSSR,Fiz. Zemli, 1986b, no. 12, pp. 3–16.

  116. Weber, K., Gvishiani, A.D., Godefroy, P., Lambert, J., Soloviev, A.A., and Trusov, A.V., Recognition of strong-earthquake-prone areas: XIII. Neotectonic scheme of Western Alps. M ≥ 5.0, in Vychislitel’naya seismologiya, Vyp. 19, Matematicheskie metody v seismologii i geodinamike (Mathematical Methods in Seismology and Geodynamics, vol. 19 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1986c, pp.82–94.

  117. Zhidkov, M.P. and Kossobokov, V.G., I Recognition of strong-earthquake-prone areas: VIII. Intersections of lineaments in the East Central Asia, in Vychislitel’naya seismologiya. Vyp. 11, Voprosy prognoza zemletryasenii i stroeniya Zemli (Issues in Earthquake Prediction and the Structure of the Earth, vol. 11 of Computational Seismology), Keilis-Borok, V.I., Moscow: Nauka, 1980, pp. 31–44.

    Google Scholar 

  118. Zhidkov, M.P., Rotvain, I.M., and Sadovskii, A.M., Recognition of strong-earthquake-prone areas: IV. Highly seismic intersections of lineaments of the Armenian Plateau, the Balkans, and the Aegean Sea basin, in Vychislitel’naya seismologiya, Vyp. 8, Interpretatsiya dannykh seismologii i neotektoniki (Interpretation of Seismological and Neotectonic Data, vol. 8 of Computational Seismology), Keilis-Borok, V.I., Ed., Moscow: Nauka, 1975, pp. 53–70.

  119. Zhidkov M.P., Keilis-Borok V.I., Kosobokov V.G. Recognition of strong-earthquake-prone areas at intersections of the Pamir and Tien Shan lineaments, in Seismicheskie vozdeistviya na gidrotekhnicheskie i energeticheskie sooruzheniya (Seismic Impacts on Hydraulic and Power Structures), Moscow: Nauka, 1980, pp. 63–69.

  120. Zhidkov, M.P., Tumarkin, A.G., and Filimonov, M.B., Recognition of strong-earthquake-prone areas: XVII. General criteria of high seismicity for Andean mountain belt, South America, in Vychislitel’naya seismologiya, Vyp. 23, Komp’yuternyi analiz geofizicheskikh polei (Computer-Aided Analysis of Geophysical Fields, vol. 23 of Computational Seismology), Moscow: Nauka, 1990, pp. 274–284.

    Google Scholar 

Download references

Funding

The work was carried in partial fulfillment of the research tasks specified by the state contracts of the Geophysical Center RAS and the Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS and approved by the Ministry of Science and Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Dzeboev.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gvishiani, A.D., Soloviev, A.A. & Dzeboev, B.A. Problem of Recognition of Strong-Earthquake-Prone Areas: a State-of-the-Art Review. Izv., Phys. Solid Earth 56, 1–23 (2020). https://doi.org/10.1134/S1069351320010048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351320010048

Keywords:

Navigation