Skip to main content
Log in

Neo-Deterministic Seismic Hazard and Pattern Recognition Techniques: Time-Dependent Scenarios for North-Eastern Italy

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

An integrated neo-deterministic approach to seismic hazard assessment has been developed that combines different pattern recognition techniques, designed for the space–time identification of impending strong earthquakes, with algorithms for the realistic modeling of seismic ground motion. The integrated approach allows for a time-dependent definition of the seismic input, through the routine updating of earthquake predictions. The scenarios of expected ground motion, associated with the alarmed areas, are defined by means of full waveform modeling. A set of neo-deterministic scenarios of ground motion is defined at regional and local scales, thus providing a prioritization tool for timely preparedness and mitigation actions. Constraints about the space and time of occurrence of the impending strong earthquakes are provided by three formally defined and globally tested algorithms, which have been developed according to a pattern recognition scheme. Two algorithms, namely CN and M8, are routinely used for intermediate-term middle-range earthquake predictions, while a third algorithm allows for the identification of the areas prone to large events. These independent procedures have been combined to better constrain the alarmed area. The pattern recognition of earthquake-prone areas does not belong to the family of earthquake prediction algorithms since it does not provide any information about the time of occurrence of the expected earthquakes. Nevertheless, it can be considered as the termless zero-approximation, which restrains the alerted areas (e.g. defined by CN or M8) to the more precise potential location of large events. Italy is the only region of moderate seismic activity where the two different prediction algorithms, CN and M8S (i.e. a spatially stabilized variant of M8), are applied simultaneously and a real-time test of predictions, for earthquakes with magnitude larger than a given threshold (namely 5.4 and 5.6 for CN algorithm, and 5.5 for M8S algorithm) has been ongoing since 2003. The application of the CN to the Adriatic region, which is relevant for seismic hazard assessment in the northeastern part of the Italian territory, is also discussed. Examples of neo-deterministic scenarios are provided, at regional and local scale and for the cities of Trieste and Nimis (Friuli Venezia Giulia region), where the knowledge of the local geological conditions permitted a detailed evaluation of the expected ground motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aki K. (1987), Strong ground motion seismology, NATO ASI series C: mathematical and physical sciences. In (eds. Erdik M. O., and Toksoz M. N.) (D. Reidel, Dordrecht, 204, pp 3–39)

  • Alekseevskaya M. A., Gabrielov A. M., Gvishiani A. D., Gelfand I. M., and Ranzman E. Y. (1977), Formal morphostructural zoning of mountain territories, J Geophys 43, 227–233

  • Aoudia A. (1998), Active faulting and seismological studies for Earthquake Hazard Assessment. Tesi di Dottorato, University of Trieste

  • Aoudia, A., Vaccari, F., Suhadolc, P., and Meghraoui, M. (2000), Seismogenic potential and earthquake hazard assessment in the Tell Atlas of Algeria, J Seismol 4, 79–98

  • Bormann P. (2008), Development of earthquake prediction research after WWII. In: Earthquake Prediction Research in China. (eds. Institute of Earthquake Science (IES) of China Earthquake Administration (CEA), China Earthquake Networks Center (CENC), and The Seismological Society of China (SSC)) (Beijing Seismological Press, pp 124–159) (in English), ISBN 978-7-5028-3279-7

  • Boschi E., Favalli P., Frugoni F., Scalera G., and Smriglio G. (1995), Mappa Massima Intensità Macrosismica risentita in Italia, Istituto Nazionale di Geofisica, Roma

  • Caputo M., Keilis-Borok V., Oficerova E., Ranzman E., Rotwain I., and Soloviev A., (1980), Pattern recognition of earthquake-prone areas in Italy, Phys Earth Planet Inter, 2(1), 305–320

  • Caputo, M., Console, R., Gabrielov, A. M., Keilis-Borok, V. I., and Sidorenko, T. V., (1983), Long-term premonitory seismicity patterns in Italy, Geophys J R Astr Soc 75, 71–75

  • Castaños, H., and Lomnitz, C. (2002), PSHA: is it science? Eng Geology 66(3–4), 315–318

  • Keilis-Borok V. I., Kutznetsov I. V., Panza G. F., Rotwain I. M., and Costa, G. (1990), On intermediate-term earthquake prediction in Central Italy, Pure and Appl Geophys 134, 79–92

  • Costa, G., Panza, G. F., and Rotwain, I. M., (1995), Stability of premonitory seismicity pattern and intermediate-term earthquake prediction in central Italy. Pure Appl Geophys 145(2), 259–275

  • Costa, G., Stanishkova, I. O., Panza, G. F., and Rotwain, I. M., (1996), Seismotectonic models and CN algorithm: the case of Italy. Pure Appl Geophys 147(1), 1–12

  • Dalla Via, G., Crippa, B., Toraldo Serra, E. M., Giacomuzzi, G., and Sabadini, R. (2007), Exploitation of high-density DInSAR data points of the Umbria-Marche (Italy) 1997 seismic sequence for fault characteristics, Geophys Res Lett, 34, L17301

  • EC8 (1993), Eurocode 8 structures in seismic regions–design: part 1 general and building, Doc TC250/SC8/N57A

  • Field, E. H., and the SCEC Phase III Working Group (2000), Accounting for site effects in probabilistic seismic hazard analyses of Southern California: overview of the SCEC Phase III Report, Bull Seism Soc Am 90, S1–S31

  • Martelli A., and Forni, M. (1998), Seismic isolation of civil buildings in Europe. In Progress in structural engineering and materials (Construction Research Communications Ltd., London, vol 1(3), 286–294)

  • Galli P., Camassi R. (2009), Rapporto sugli effetti del terremoto aquilano del 6 aprile 2009, RPT03, http://www.mi.ingv.it/eq/090406/quest.html

  • Gasperini P., Camassi R., Mirto C., and Stucchi M., (2004), Catalogo Parametrico dei Terremoti Italiani, versione 2004 (CPTI04). INGV, Bologna. Girdler, R. W., McConnell, D. A., (1994). The 1990 to 1991 Sudan earthquake sequence and the extent of the East African Rift System. Science 264, 67–70

  • Gelfand I., Guberman Sh., Izvekova M., Keilis-Borok V., and Rantsman E. (1972), Criteria of high seismicity, determined by pattern recognition, Tectonophysics 13, 415–422

  • Girdler, R.W., McConnell, D.A., (1994), The 1990 to 1991 Sudan earthquake sequence and the extent of the East African Rift System. Science, 264, 67–70

  • Gorshkov A., Kuznetsov I., Panza G., and Soloviev A. (2000), Identification of future earthquake sources in the Carpatho-Balkan orogenic belt using morphostuctural criteria, Pure and Appl Geophys 157, 79–95

  • Gorshkov A., Panza G. F., Soloviev A. A., and Aoudia A. (2002), Morphostructural zonation and preliminary recognition of seismogenic nodes around the Adria margin in peninsular Italy and Sicily, J Seismol Earthq Eng. 4(1), 1–24

  • Gorshkov A. I., Kossobokov V., and Soloviev A. A. (2003), Recognition of earthquake prone areas. In Nonlinear dynamics of the lithosphere and earthquake prediction, (eds. Keilis-Borok, V. and Soloviev, A.) (Springer, Heidelberg, 235–320)

  • Gorshkov A. I., Panza G. F., Soloviev A. A., and Aoudia A. (2004), Identification of seismogenic nodes in the Alps and Dinarides, Boll Soc Geol It, 123, 3–18

  • Gorshkov A. I., Panza G. F., Soloviev A. A., Aoudia A., and Peresan A. (2009), Delineation of the geometry of the nodes in the Alps-Dinarides hinge zone and recognition of seismogenic nodes (M ≥ 6), Terra Nova, 21(4), 257–264. doi:10.1111/j.1365-3121.2009.00879.x

  • Gruppo di Lavoro (2004). Redazione della mappa di pericolosità sismica prevista dall’Ordinanza PCM 3274 del 20 marzo 2003. Rapporto conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, 65 pp + 5 appendix

  • Gusev A. A., (1983), Descriptive statistical model of earthquake source radiation and its application to an estimation of short period strong motion, Geophys. J R Astron Soc 74, 787–800

  • Gusev, A. A., and Pavlov. V., (2006) Wideband simulation of earthquake ground motion by a spectrum-matching, multiple-pulse technique. First European Conference on Earthquake Engineering and Seismology (a joint event of the 13th ECEE and 30th General Assembly of the ESC), Geneva, Switzerland, 3–8 September 2006, paper number 408

  • Gvishiani, A. D. and Soloviev, A. A. (1981), Association of the epicenters of strongearthquakes with the intersections of morphostructural lineaments in South America. In Interpretation of seismic data: methods and algorithms, Comput Seismol 13 (eds. Keilis-Borok V. I., and Levshin, A. L.) (Allerton, New York pp 42–46)

  • Gvishiani A., Gorshkov A., Kossobokov V., and Rantsman E. (1986), Mosphostructures and Earthquake-prone areas in Great Caucasus, Izvestyia USSR Academy of Science, Phys Earth 9, 15–23 (in Russian)

  • Hudnut, K.W., Seeber, L., and Pacheco, J. (1989), Cross-fault triggering in the November 1987 Superstition Hills earthquake sequence, Southern California. Geophys Res Lett 16, 199–202

  • Kanamori H., (1977), The energy release in great earthquakes, J Geophys Res, 82, 2981–2987

  • Keilis-Borok V. I., (1996), Intermediate term earthquake prediction, Proc Natl Acad Sci USA 93, 3748–3755

  • Keilis-Borok V. I., and Kossobokov V. G., (1987), Periods of high probability of occurrence of the world’s strongest earthquakes, Computational Seismology. Allerton Press, 19, 45–53

  • Keilis-Borok V. I., and Kossobokov V. G. (1990), Premonitory activation of seismic flow: Algorithm M8, Phys Earth Planet Inter 61, 73–83

  • Keilis-Borok V. I., and Rotwain I. M. (1990), Diagnosis of time of increased probability of strong earthquakes in different regions of the world: algorithm CN, Phys Earth Planet Inter 61, 57–72

  • Keilis-Borok V. I., Soloviev, A., (2003), Nonlinear Dynamics of the Lithosphere and Earthquake Prediction (Springer-Verlag, Berlin)

  • King, G., (1986), Speculations on the geometry of the initiation a termination processes of earthquake rupture and its relation to morphology and geological structure, Pure Appl Geophys 124, 567–583

  • Klügel J. -U., (2007), Error inflation in probabilistic seismic hazard analysis., Eng Geol 90, 186–192

  • Klügel J. -U, Mualchin L., and Panza G. F. (2006), A scenario-based procedure for seismic risk analysis, Eng Geol 88, 1–22

  • Knopoff L., (1996), Earthquake prediction: the scientific challenge, Proc Natl Acad Sci USA 93

  • Kossobokov V. G., Romashkova L. L., Keilis-Borok V. I., and Healy J. H. (1999), Testing earthquake prediction algorithms: statistically significant advance prediction of the largest earthquakes in the Circum-Pacific, 1992–1997, Phys Earth Planet Inter 111, 187–196

  • Kossobokov V. G., Romashkova L. L., Panza G. F., and Peresan A. (2002), Stabilizing intermediate-term medium-range earthquake predictions, J Seismol Earthq Eng 8, 11–19

  • Molchan G. M., Kronrod, T. L., and Panza G. F. (1997), Multiscale seismicity model for seismic risk, Bull Seismol Soc Am 87(5), 1220–1229

  • Marotta A. M., and Sabadini R. (2004), The signatures of tectonics and glacial isostatic adjustment revealed by the strain rate in Europe. Geophys J Int 157(2)

  • Meletti C., and Valensise G. (2004), Zonazione sismogenetica ZS9: App.2 al Rapporto Conclusivo. In Gruppo di Lavoro MPS. Redazione della mappa di pericolosità sismica prevista dall’Ordinanza PCM 3274 del 20 marzo 2003. Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, 65 pp + 5 allegati.

  • Meletti C., Patacca E., and Scandone P., (2000) Construction of a seismotectonic model: the case of Italy, Pure Appl Geophys 157, 11–35

  • Molchan, G. M. (1990), Strategies in strong earthquake prediction. Phys Earth Planet Int 61, 84–98

  • Molchan, G. M. (1996), Earthquake prediction as a decision-making problem. Pure Appl Geophys 147(1) 1–15

  • Molchan, G. M., Dmitrieva, O. E., Rotwain, I. M., and Dewey, J. (1990), Statistical analysis of the results of earthquake prediction, based on bursts of aftershocks, Phys Earth Planet Int 61, 128–139

  • Molin, D., Stucchi, M., and Valensise, G. (1996) Massime intensità macrosismiche osservate nei comuni italiani, elaborato per il Dipartimento della Protezione Civile, GNDT, ING, SSN, Roma, 1996. (http://emidius.mi.ingv.it/GNDT/IMAX/maxintoss.html).

  • Mulargia, F., Gasperini, P. and Marzocchi, W. (1991), Pattern recognition applied to volcanic activity: Identification of the precursory patterns to Etna flank eruptions and periods of rest, J Volc Geoth Res 45, 187–196

  • Dolce M., Martelli A., and Panza, G. (2004), Proteggersi dal terremoto: le moderne tecnologie e metodologie e la nuova normativa sismica. (in italian) 212, ISBN 88-87731-24-1..

  • Rotwain I. M., Peresan A., Panza, G. F and Rosso M. (2010), Application of the intermediate-term earthquake prediction algorithm CN to the Adriatic and Ionian Foreland domains, In preparation

  • Panza, G. F., Vaccari, F., Costa, G., Suhadolc, P., and Fäh, D. (1996), Seismic input modeling for zoning and microzoning, Earthq Spectra 12, pp 529–566

  • Panza, G. F., Vaccari, F., and Cazzaro, R. (1997), Correlation between macroseismic intensities and seismic ground motion parameters, Annali di geofisica 15, 1371–1382

  • Panza, G. F., Vaccari, F., and Cazzaro, R. (1999), Deterministic seismic hazard assesment. In Vrancea earthquake: tectonics, hazard and risk mitigation (ed Wenzel et al) (Kluwer, Olanda 269–286)

  • Panza G. F., Romanelli F., and Vaccari F. (2001), Seismic wave propagation in laterally heterogeneous anelastic media: theory and applications to seismic zonation, Adv Geophys 43 pp 1–95

  • Panza, G. F., Romanelli, F., Vaccari, F., Decanini, L. and Mollaioli, F. (2004), Seismic ground motion modeling and damage earthquake scenarios: a possible bridge between seismologists and seismic engineers. In Earthquake: Hazard, Risk, and Strong Ground Motion (eds Chen, Y. T., Panza G. F., and Wu, Z. L.) (Seismological Press, pp 323–349)

  • Parvez, I. A., Vaccari, F., and Panza, G. F. (2002), A deterministic seismic hazard map of India and adjacent areas. Geophys J Int 155, 489–508

  • Paskaleva, I., Dimova, S., Panza, G. F., and Vaccari, F. (2007), An Earthquake scenario for the microzonation of Sofia and the vulnerability of structures designed by use of the Eurocodes. Soil Dyn Earthq Eng 27, 1028–1041

  • Peresan A., Panza G. F. (2002), UCI2001: The updated catalogue of Italy, ICTP, Trieste, Italy, Internal report, IC/IR/2002/3

  • Peresan A., Costa G., and Vaccari F. (1997), CCI1996: the Current Catalogue of Italy (The Abdus Salam International Centre for Theoretical Physics Internal report, Trieste)

  • Peresan, A., Costa, G., Panza, G. F. (1999), Seismotectonic model and CN earthquake prediction in Italy, Pure Appl Geophys 154, 281–306

  • Peresan, A., Panza, G. F., and Costa, G. (2000), CN algorithm and long lasting changes in reported magnitudes: the case of Italy. Geophys J Int 141, 425–437

  • Peresan, A., Rotwain, I., Zaliapin, I., Panza, G. F. (2002a), Stability of intermediate-term earthquake predictions with respect to random errors in magnitude: the case of Central Italy. Phys Earth Planetary Inter 130, 117–127

  • Peresan A., Panza G. F., Gorshkov A., Aoudia A. (2002b), Pattern recognition methodologies and deterministic evaluation of seismic hazard: a strategy to increase earthquake preparedness, Bollettino della Società Geologica Italiana. Special issue n° 1 (part 1), 37–46

  • Peresan, A., Kossobokov, V. I., Romashkova, L. L., Panza, G. F. (2005), Intermediate-term middle-range earthquake predictions in Italy: a review, Earth Sci Rev 69(1–2), 97–132

  • Peresan, A., Rotwain, I., Herak, D. and Panza, G. (2006) CN earthquake prediction for the Adria region and its surroundings, In: Abstract of first European conference on earthquake engineering and seismology, SGEB, ETH 117–118, Geneve, 3–8, 09

  • Peresan, A., Zuccolo, E., Vaccari, F. and Panza, G. F, (2009), Neo-deterministic seismic hazard scenarios for North-Eastern Italy, Boll Soc Geol It 128(1), 229–238

  • Rantsman, E. Ya. (1979) Morphostructure of Mountain Regions and Sites of Earthquakes, Nauka, Moscow (in Russian)

  • Rotwain, I. M., and Novikova, O. (1999) Performance of the earthquake prediction algorithm CN in 22 regions of the world, Phys Earth Planet Inter 111, 207–213

  • Slejko D., Peruzza L., and Rebez A. (1998), Seismic hazard maps of Italy, Annali di Geofisica 41, 183–214

  • Stucchi et ali. (2007) DBMI04, il database delle osservazioni macrosismiche dei terremoti italiani utilizzate per la compilazione del catalogo parametrico CPTI04, http://emidius.mi.ingv.it/DBMI04/. Quaderni di Geofisica, vol 49, p 38

  • Talwani, P. (1988), The intersection model for intraplate earthquakes. Seismol Res Lett 59, 305–310

    Google Scholar 

  • Talwani, P. (1999) Fault geometry and earthquakes in continental interiors, Tectonophysics 305, 371–379

  • Markusic S., Suhadolc P., Herak M., and Vaccari, F. (2000), Contribution to seismic hazard assessment in croatia from deterministic modeling, Pure Appl Geophys 157, 185–204

  • Vaccari, F., Romanelli, F., and Panza, G. F. (2005), Detailed modeling of strong ground motion in Trieste. GT&A 2, 7–40

  • Wells, D. L., and Coppersmith, K. J. (1994), New empirical relationships among magnitude, rupture length, rupture width, and surface displacement, Bull Seism Soc Am 84, 974–1002

    Google Scholar 

  • Zechar, J. D., and Jordan, T. H. (2008), Testing alarm-based earthquake predictions, Geophys J Int 172, 715–724

    Google Scholar 

  • Zivcic, M., Suhadolc, P., and Vaccari, F. (2000), Seismic zoning of Slovenia based on deterministic hazard computations, Pure Appl Geophys 157, 171–184

    Google Scholar 

  • Zuccolo, E., Vaccari, F., Peresan, A., Dusi, A., Martelli, A., and Panza, G. F. (2008), Neo-deterministic definition of seismic input for residential seismically isolated buildings, Eng Geol. doi:10.1016/j.enggeo.2008.04.006

Download references

Acknowledgments

We are grateful to I. Rotwain and L. Romashkova for their precious contribution and to V. Kossobokov for the useful discussions. This research has been partly developed in the framework of the Agreement between “Protezione Civile della Regione Autonoma Friuli-Venezia Giulia” and “The Abdus Salam International Centre for Theoretical Physics” (ICTP), Trieste (DGR 2226 dd. 14.9.2005 and DGR 1459 dd. 24.6.2009) and benefitted by financial support from the following projects: the ASI - Pilot Project “SISMA: SISMA- Information System for Monitoring and Alert” and of Project ALPS-GPSQUAKENET (Interreg III-B - EU Alpine Space Programme). This research has benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile (DPC). Scientific papers funded by DPC do not represent its official opinion and policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Peresan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peresan, A., Zuccolo, E., Vaccari, F. et al. Neo-Deterministic Seismic Hazard and Pattern Recognition Techniques: Time-Dependent Scenarios for North-Eastern Italy. Pure Appl. Geophys. 168, 583–607 (2011). https://doi.org/10.1007/s00024-010-0166-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-010-0166-1

Keywords

Navigation