Skip to main content
Log in

Identification and Comparative Analysis of the miRNAs in Gonads of High-altitude Species, Batrachuperus tibetanus

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a kind of small non-coding RNA molecules that regulate gene expression by targeting mRNA and play critical roles involved various life processes of organisms. Batrachuperus tibetanus (B. tibetanus) as an endangered amphibian species of salamander endemic to China, has attracted much attention because of its value of studying paleontology evolutionary history and decreasing population size. Until now, research in gonadal miRNA of B. tibetanus have not been reported. In this study, RNA sequencing technology was used to screen miRNAs based on the construction of two cDNA libraries from adult testis and ovary tissues of B. tibetanus, respectively. Totally, 15 481 068 and 15 929 246 raw reads were yielded in testis and ovary, respectively, representing five known and 88 novel miRNAs. Among all these identified miRNA, 54 differentially expressed miRNAs were found between testis and ovary of B. tibetanus containing 25 up-regulated as well as 29 down-regulated miRNAs. Ten miRNAs were randomly chosen to verify their expression by using stem-loop qRT-PCR indicating the reliability and accuracy of sequenced data. Additionally, further analysis of target mRNAs of differentially expressed miRNAs reveals that they were mainly involved in cellular processes, reproduction and reproductive process related GO terms. Our current result is the first to perform the identification, characterization, differential expression and functional analysis of gonadal miRNAs both in testis and ovary of B. tibetanus, which also provide a valuable reference to enhance the resource protection of stream salamander species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bartel, D.P., Cell, 2004, vol. 116, pp. 281–297. https://doi.org/10.1016/S0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  2. He, L. and Hannon, G.J., Nat. Rev. Genet., 2004, vol. 5, pp. 522–531. https://doi.org/10.1038/nrg1379

    Article  CAS  PubMed  Google Scholar 

  3. Hossain, M.M., Sohel, M.M., Schellander, K., and Tesfaye, D., Cell. Tissue Res., 2012, vol. 349, pp. 679–690. https://doi.org/10.1007/s00441-012-1469-6

    Article  CAS  PubMed  Google Scholar 

  4. Pratt, S.L. and Calcatera, S.M., Reprod. Fertil. Dev., 2016, vol. 29, pp. 24–31. https://doi.org/10.1071/RD16293

    Article  CAS  PubMed  Google Scholar 

  5. Xing, K., Gao, M., Li, X., Feng, Y., Ge, Y., Qi, X., Wang, X., Ni, H., Guo, Y., Sheng, X., Reprod. Biol., 2020, vol. 20, pp. 433–440. https://doi.org/10.1016/j.repbio.2020.03.003

    Article  PubMed  Google Scholar 

  6. Wainwright, E.N., Jorgensen, J.S., Kim, Y., Truong, V., Bagheri-Fam, S., Davidson, T., Svingen, T., Fernandez-Valverde, S.L., McClelland, K.S., Taft, R.J., Harley, V.R., Koopman, P., and Wilhelm, D., Biol. Reprod., 2013, vol. 89, p. 34. https://doi.org/10.1095/biolreprod.113.110155

    Article  CAS  PubMed  Google Scholar 

  7. Juanchich, A., Le Cam, A., Montfort, J., Guiguen, Y., and Bobe, J., Biol. Reprod., 2013, vol. 88, p. 128. https://doi.org/10.1095/biolreprod.112.105361

    Article  PubMed  Google Scholar 

  8. Tesfaye, D., Worku, D., Rings, F., Phatsara, C., Tholen, E., Schellander, K., and Hoelker, M., Mol. Reprod. Dev., 2009, vol. 76, pp. 665–677. https://doi.org/10.1002/mrd.21005

    Article  CAS  PubMed  Google Scholar 

  9. Staton, A.A., Knaut, H., and Giraldez, A.J., Nat. Genet., 2011, vol. 43, pp. 204–211. https://doi.org/10.1038/ng.758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takeda, Y., Mishima, Y., Fujiwara, T., Sakamoto, H., and Inoue, K., PLoS, One, 2009, vol. 4, p. e7513. https://doi.org/10.1371/journal.pone.0007513

    Article  CAS  PubMed  Google Scholar 

  11. Mei, J., Yue, H.M., Li, Z., Chen, B., Zhong, J.X., Dan, C., Zhou, L., and Gui, J.F., Int. J. Biol. Sci., 2013, vol. 10, pp. 15–24. https://doi.org/10.7150/ijbs.7490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Toledano, H., D’Alterio, C., Czech, B., Levine, E., and Jones, D.L., Nature, 2012, vol. 485, pp. 605–610. https://doi.org/10.1038/nature11061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kang, M.H., Zhang, L.H., Wijesekara, N., de Haan, W., Butland, S., Bhattacharjee, A., and Hayden, M.R.R., Arterioscler., Thromb., Vasc. Biol., 2013, vol. 33, pp. 2724–2732. https://doi.org/10.1161/ATVBAHA.113.302004

    Article  CAS  PubMed  Google Scholar 

  14. Pokharel, K., Peippo, J., Honkatukia, M., Seppala, A., Rautiainen, J., Ghanem, N., Hamama, T.M., Crowe, M.A., Andersson, M., Li, M.H., and Kantanen, J., BMC Genomics, 2018, vol. 19, p. 104. https://doi.org/10.1186/s12864-017-4400-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mi, X., Wei, Z., Zhou, Z., and Liu, X., Comp. Biochem. Physiol., Part D: Genomics Proteomics, 2014, vol. 10, pp. 1–8. https://doi.org/10.1016/j.cbd.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  16. Shu, Y., Zhang, H., Cai, Q., Tang, D., Wang, G., Liu, T., Lv, B., and Wu, H., J. Exp. Zool. B: Mol. Dev. Evol., 2019, vol. 332, pp. 69–80. https://doi.org/10.1002/jez.b.22851

    Article  CAS  PubMed  Google Scholar 

  17. Yan, N., Lu, Y., Sun, H., Qiu, W., Tao, D., Liu, Y., Chen, H., Yang, Y., Zhang, S., Li, X., and Ma, Y., J. Assist. Reprod. Genet., 2009, vol. 26, pp. 179–186. https://doi.org/10.1007/s10815-009-9305-y

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xiong, J., Lv, Y., Huang, Y., and Liu, Q., Int. J. Mol. Sci., 2019, vol, 20, p. 1529. https://doi.org/10.3390/ijms20071529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Langmead, B. and Salzberg, S.L., Nat. Methods, 2012, vol. 9, pp. 357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Friedlander, M. R., Mackowiak, S. D., Li, N., Chen, W., and Rajewsky, N., Nucleic Acids Res., 2012, vol. 40, pp. 37–52. https://doi.org/10.1093/nar/gkr688

    Article  CAS  PubMed  Google Scholar 

  21. Wen, M., Shen, Y., Shi, S., and Tang, T., BMC Bioinf., 2012, vol. 13, p. 140. https://doi.org/10.1186/1471-2105-13-140

  22. Robinson, M. D., McCarthy, D. J., and Smyth, G. K., Bioinformatics, 2010, vol. 26, pp. 139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  23. Huang, Y., Gong, W., Ren, H., Xiong, J., Gao, X., and Sun, X., Gene, 2017, vol. 626, pp. 298–304. https://doi.org/10.1016/j.gene.2017.05.052

    Article  CAS  PubMed  Google Scholar 

  24. Da Huang, W., Sherman, B.T., and Lempicki, R.A., Nat. Protoc., 2009, vol. 4, pp. 44–57. https://doi.org/10.1038/nprot.2008.211

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, X., Yang, F., Liu, F., Tian, Q., Hu, M., Li, P., and Zeng, Y., Front. Mol. Biosci., 2021, vol. 8, p. 730006. https://doi.org/10.3389/fmolb.2021.730006

    Article  CAS  PubMed  Google Scholar 

  26. Kawaoka, S., Mitsutake, H., Kiuchi, T., Kobayashi, M., Yoshikawa, M., Suzuki, Y., Sugano, S., Shimada, T., Kobayashi, J., Tomari, Y., and Katsuma, S., RNA, 2012, vol. 18, pp. 265–273. https://doi.org/10.1261/rna.029777.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muerdter, F., Guzzardo, P.M., Gillis, J., Luo, Y., Yu, Y., Chen, C., Fekete, R., and Hannon, G.J., Mol. Cell, 2013, vol. 50, pp. 736–748. https://doi.org/10.1016/j.molcel.2013.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu, H., Lin, Y., Sun, L., Fang, X., and Jia, L., Talanta, 2020, vol. 219, p. 121302. https://doi.org/10.1016/j.talanta.2020.121302

    Article  CAS  PubMed  Google Scholar 

  29. Brodersen, P. and Voinnet, O., Nat. Rev. Mol. Cell Biol., 2009, vol. 10, pp. 141–148. https://doi.org/10.1038/nrm2619

    Article  CAS  PubMed  Google Scholar 

  30. Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M., PLoS, Biol., 2005, vol. 3, p. e85. https://doi.org/10.1371/journal.pbio.0030085

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, X., Li, L., Jiang, H., Ma, J. E., Li, J., and Chen, J., Gene, 2018, vol. 658, pp. 36–46. https://doi.org/10.1016/j.gene.2018.03.014

    Article  CAS  PubMed  Google Scholar 

  32. Wang, Y., Liu, X., Yu, L., Hong, X., Zhao, J., Zhu, J., Yuan, J., Li, W., and Zhu, X., Comp. Biochem. Physiol., Part D: Genomics Proteomics, 2021, vol. 40, p. 100890. https://doi.org/10.1016/j.cbd.2021.100890

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The project was supported by Guangdong Province and the Key Research Project of Higher Education Institutions of Henan Province (23A240003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Huang.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, S., Huang, Y., Xiong, J. et al. Identification and Comparative Analysis of the miRNAs in Gonads of High-altitude Species, Batrachuperus tibetanus. Russ J Bioorg Chem 48 (Suppl 1), S144–S153 (2022). https://doi.org/10.1134/S1068162023010260

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162023010260

Keywords:

Navigation