Skip to main content
Log in

Detection of the PRAME Protein on the Surface of Melanoma Cells Using a Fluorescently Labeled Monoclonal Antibody

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Determination of the expression level of tumor marker PRAME protein is important both for predicting the course of the disease and for monitoring the effectiveness of anticancer therapy. A fluorescently labeled monoclonal antibody to the PRAME protein was obtained by periodate oxidation of glycans followed by modification with a bifunctional azido-oxyamine reagent and a “click” reaction with alkyne-modified sulfonated cyanine dye Cy3. A new approach to the synthesis of a bifunctional azido-oxyamine reagent using the ethoxyethylidene protecting group for oxyamine is proposed. The labeled antibodies were characterized with UV/Vis absorption spectra and the stoichiometry of the modification was determined. It has been demonstrated that the fluorescent antibodies retain affinity and can be used as a diagnostic tool for detecting the residual marker (the PRAME protein) after anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Wadelin, F., Fulton, J., McEwan, P.A., Spriggs, K.A., Emsley, J., and Heery, D.M., Mol. Cancer, 2010, vol. 9, p. 226. https://doi.org/10.1186/1476-4598-9-226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Al-Khadairi, G. and Decock, J., Cancers, 2019, vol. 11, p. 984. https://doi.org/10.3390/cancers11070984

    Article  CAS  PubMed Central  Google Scholar 

  3. Wei, R., Dean, D.C., Thanindratarn, P., Hornicek, F.J., Guo, W., and Duan, Z., Cancer Lett., 2020, vol. 479, pp. 54–60. https://doi.org/10.1016/j.canlet.2019.10.024

    Article  CAS  PubMed  Google Scholar 

  4. Xu, Y., Zou, R., Wang, J., Wang, Z., and Zhu, X., Cell Proliferation, 2020, vol. 53, p. E12770. https://doi.org/10.1111/cpr.12770

    Article  PubMed  PubMed Central  Google Scholar 

  5. Epping, M.T., Wang, L., Edel, M.J., Carlee, L., Hernandez, M., and Bernards, R., Cell, 2005, vol. 122, pp. 835–847. https://doi.org/10.1016/j.cell.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  6. Field, M.G., Decatur, C.L., Kurtenbach, S., Gezgin, G., van der Velden, P.A., Jager, M.J., Kozak, K.N., and Harbour, J.W., Clin. Cancer Res., 2016, vol. 22, pp. 1234–1242. https://doi.org/10.1158/1078-0432.CCR-15-2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Field, M.G., Durante, M.A., Decatur, C.L., Tarlan, B., Oelschlager, K.M., Stone, J.F., Kuznetsov, J., Bowcock, A.M., Kurtenbach, S., and Harbour, J.W., Oncotarget, 2016, vol. 7, pp. 59209–59219. https://doi.org/10.18632/oncotarget.10962

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gerami, P., Yao, Z., Polsky, D., Jansen, B., Busam, K., Ho, J., Martini, M., and Ferris, L.K., J. Am. Acad. Dermatol., 2017, vol. 76, pp. 114–120. https://doi.org/10.1016/j.jaad.2016.07.038

    Article  CAS  PubMed  Google Scholar 

  9. Pankov, D., Sjostrom, L., Kalidindi, T., Lee, S.-G., Sjostrom, K., Gardner, R., McDevitt, M.R., O’Reilly, R., Thorek, D.L.J., Larson, S.M., Veach, D., and Ulmert, D., Oncotarget, 2017, vol. 8, pp. 65917–65931. https://doi.org/10.18632/oncotarget.19579

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ferris, L.K., Gerami, P., Skelsey, M.K., Peck, G., Hren, C., Gorman, C., Frumento, T., and Siegel, D.M., Melanoma Res., 2018, vol. 28, pp. 478–482. https://doi.org/10.1097/CMR.0000000000000478

    Article  CAS  PubMed  Google Scholar 

  11. Wang, W.-L., Gokgoz, N., Samman, B., Andrulis, I.L., Wunder, J.S., and Demicco, E.G., Modern Pathol., 2020. https://doi.org/10.1038/s41379-020-00687-5

  12. Gerber, J.M., Qin, L., Kowalski, J., Smith, B.D., Griffin, C.A., Vala, M.S., Collector, M.I., Perkins, B., Zahurak, M., Matsui, W., Gocke, C.D., Sharkis, S.J., Levitsky, H.I., and Jones, R.J., Am. J. Hematol., 2011, vol. 86, pp. 31–37. https://doi.org/10.1002/ajh.21915

    Article  PubMed  PubMed Central  Google Scholar 

  13. Misyurin, V.A., Finashutina, Y.P., Turba, A.A., Larina, M.V., Solopova, O.N., Lyzhko, N.A., Kesaeva, L.A., Kasatkina, N.N., Aliev, T.K., Misyurin, A.V., and Kirpichnikov, M.P., Dokl. Biochem. Biophys., 2020, vol. 492, pp. 135–138. https://doi.org/10.1134/S1607672920030072

    Article  CAS  PubMed  Google Scholar 

  14. Wolfe, C.A.C. and Hage, D.S., Anal. Biochem., 1995, vol. 231, pp. 123–130. https://doi.org/10.1006/abio.1995.1511

    Article  CAS  PubMed  Google Scholar 

  15. Kölmel, D.K. and Kool, E.T., Chem. Rev., 2017, vol. 117, pp. 10358–10376. https://doi.org/10.1021/acs.chemrev.7b00090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zuberbühler, K., Casi, G., Bernardes, G.J.L., and Neri, D., Chem. Commun., 2012, vol. 48, pp. 7100–7102. https://doi.org/10.1039/C2CC32412A

    Article  Google Scholar 

  17. Meldal, M. and Tornøe, C.W., Chem. Rev., 2008, vol. 108, pp. 2952–3015. https://doi.org/10.1021/cr0783479

    Article  CAS  PubMed  Google Scholar 

  18. Hudak, J.E., Barfield, R.M., de Hart, G.W., Grob, P., Nogales, E., Bertozzi, C.R., and Rabuka, D., Angew. Chem., Int. Ed. Engl., 2012, vol. 51, pp. 4161–4165. https://doi.org/10.1002/anie.201108130

    Article  CAS  Google Scholar 

  19. Kim, C.H., Axup, J.Y., Dubrovska, A., Kazane, S.A., Hutchins, B.A., Wold, E.D., Smider, V.V., and Schultz, P.G., J. Am. Chem. Soc., 2012, vol. 134, pp. 9918–9921. https://doi.org/10.1021/ja303904e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. DeForest, C.A. and Tirrell, D.A., Nat. Mater., 2015, vol. 14, pp. 523–531. https://doi.org/10.1038/nmat4219

    Article  CAS  PubMed  Google Scholar 

  21. Khomutov, M.A., Mandal, S., Weisell, J., Saxena, N., Simonian, A.R., Vepsalainen, J., Madhubala, R., and Kochetkov, S.N., Amino Acids, 2010, vol. 38, pp. 509–517. https://doi.org/10.1007/s00726-009-0410-0

    Article  CAS  PubMed  Google Scholar 

  22. Hestand, N.J. and Spano, F.C., Chem. Rev., 2018, vol. 118, pp. 7069–7163. https://doi.org/10.1021/acs.chemrev.7b00581

    Article  CAS  PubMed  Google Scholar 

  23. Barna, G., Reiniger, L., Tátrai, P., Kopper, L., and Matolcsy, A., Hematol. Oncol., 2008, vol. 26, pp. 167–170. https://doi.org/10.1002/hon.855

    Article  PubMed  Google Scholar 

  24. Uckun, F.M., Jaszcz, W., Ambrus, J.L., Fauci, A.S., Gajl-Peczalska, K., Song, C.W., Wick, M.R., Myers, D.E., Waddick, K., and Ledbetter, J.A., Blood, 1988, vol. 71, pp. 13–29. https://doi.org/10.1182/blood.V71.1.13.13

    Article  CAS  PubMed  Google Scholar 

  25. Powroźnik, B., Kubowicz, P., and Pękala, E., Postepy Hig. Med. Dosw., 2012, vol. 66, pp. 663–673. https://doi.org/10.5604/17322693.1009980

    Article  Google Scholar 

  26. Finashutina, Yu.P., Misyurin, A.V., Akhlynina, T.V., Lyzhko, N.A., Krutov, A.A., Aksenova, E.V., Misyurin, V.A., and Baryshnikov, A.Yu., Russ. J. Biother., 2015, vol. 14, pp. 29–36. https://doi.org/10.17650/1726-9784-2015-14-3-29-36

    Article  Google Scholar 

  27. Chen, Chiao Y.C., Gurudath, Rao K., Hook, J.W., Krugh, T.R., and Sengupta, S.K., Biopolymers, 1979, vol. 18, pp. 1749–1762. https://doi.org/10.1002/bip.1979.360180712

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the student of the Department of Biology, Moscow State University, E.A. Kokin, for conducting preliminary experiments on modification of model oxidized polyclonal antibodies with an oxyamine reagent (I).

Funding

The development of a method for modifying monoclonal antibodies was supported by the Russian Science Foundation (project 20-15-00361). K.A. Sapozhnikova is grateful for the financial support from the Russian Foundation for Basic Research (project 20-34-90125 “Postgraduates”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Misyurin or V. A. Brylev.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain a description of experiments conducted by any of the authors of this article with the participation of humans or the use of animals as research objects.

CONFLICT OF INTEREST

The authors declare they have no conflicts of interest.

Additional information

Abbreviations: Boc, tert-butyloxycarbonyl; ESI, electrospray ionization; PRAME, preferentially expressed antigen in melanoma; THPTA, tris(3-hydroxypropyltriazolylmethyl)amine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapozhnikova, K.A., Misyurin, A.V., Pestov, N.B. et al. Detection of the PRAME Protein on the Surface of Melanoma Cells Using a Fluorescently Labeled Monoclonal Antibody. Russ J Bioorg Chem 47, 1077–1085 (2021). https://doi.org/10.1134/S1068162021050332

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021050332

Keywords:

Navigation