Skip to main content
Log in

Novel convenient synthesis of biologically active esters of hydroxylamine

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Alkylation of ethyl N-hydroxyacetimidate with readily available methanesulfonates of functionally substituted alcohols and subsequent deprotection of aminooxy group is a novel and convenient method to prepare functionally substituted esters of hydroxylamine with high overall yield. This approach is a good alternative to well-known reaction of N-hydroxyphthalimide with alcohols under the Mitsunobu conditions. The properties of ethoxyethylidene protection of aminooxy group on the contrary to that of N-alkoxyphthalimide group allow to perform a wide spectra of the transformations in the radical of N-protected hydroxylamine derivatives. This is essential for synthetic strategies consisting in the introduction of N-protected aminooxy group at one of the first steps of synthesis and subsequent transformations of the radical.

The inhibitory effect of one of the newly synthesized compound, 1-guanidinooxy-3-aminopropane (GAPA), was compared with that of well-known inhibitors of ornithine decarboxylase namely, α-difluoromethylornithine (DFMO) and 1-aminooxy-3-aminopropane (APA) on Leishmania donovani, a protozoan parasite that causes visceral leishmaniasis. GAPA, on the contrary with APA and DFMO, in micromolar concentrations, inhibited the growth of both amastigotes and promastigotes of sodium antimony gluconate-resistant forms of L. donovani.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1

Similar content being viewed by others

Abbreviations

AdoMet:

S-Adenosylmethionine

Agm:

Agmatine (1-guanidino-4-aminobutane)

APA:

1-Aminooxy-3-aminopropane

DFMO:

α-Difluoromethylornithine

GAPA:

1-Guanidinooxy-3-aminopropane

Put:

Putrescine (1,4-diaminobutane)

Spd:

Spermidine (1,8-diamino-4-azaoctane)

SAG:

Sodium stibogluconate

References

  • Albrecht S, Defoin A, Tarnus C (2006) Simple preparation of O-substituted hydroxylamines from alcohols. Synthesis 1635–1638

  • Bauer L, Suresh KS (1963) S-[ω-(Aminooxy)alkyl]isothiuronium salts, ω,ω′-bis(aminooxy)alkanes and related compounds. J Org Chem 28:1604–1608

    Article  CAS  Google Scholar 

  • Bhattacharyya A, Roy M, Mandal A, Duttagupta S (2001) Effect of metal ions and other antileishmanial drugs on stibanate-resistant Leishmania donovani promastigotes of Indian origin. Curr Sci 81:1470–1473

    CAS  Google Scholar 

  • Bitonti AJ, Dumont JA, Bush TL et al (1989) Bis(benzyl) polyamine analogs inhibit the growth of chloroquine-resistant human malaria parasites (Plasmodium falciparum) in vitro and in combination with alpha-difluoromethylornithine cure murine malaria. Proc Natl Acad Sci USA 86:651–655

    Article  CAS  PubMed  Google Scholar 

  • Burri C, Brun R (2003) Eflornithine for the treatment of human African trypanosomiasis. Parasitol Res 90:S49–S52

    PubMed  Google Scholar 

  • Capitani G, Eliot AC, Gut H et al (2003) Structure of 1-aminocyclopropane-1-carboxylate synthase in complex with an amino-oxy analogue of the substrate: implications for substrate binding. Biochim Biophys Acta 1647:55–60

    CAS  PubMed  Google Scholar 

  • Chen J, Zeng W, Offord R, Rose K (2003) A novel method for the rational construction of well-defined immunogens: the use of oxidation to conjugate cholera toxic B subunit to peptide-polyoxime complex. Bioconjug Chem 14:614–618

    Article  CAS  PubMed  Google Scholar 

  • Das Gupta R, Krause-Ihle T, Bergmann B et al (2005) 3-Aminooxy-1-aminopropane and derivatives have an antiproliferative effect on cultured Plasmodium falciparum by decreasing intracellular polyamine concentrations. Antimicrob Agents Chemother 49:2857–2864

    Article  CAS  PubMed  Google Scholar 

  • Gillin FD, Reiner DS, McCann PP (1984) Inhibition of growth of Giardia lamblia by difluoromethylornithine, a specific inhibitor of polyamine biosynthesis. J Protozool 31:161–163

    CAS  PubMed  Google Scholar 

  • Guo J, Wu YQ, Rattendi D, Bacchi CJ, Woster PM (1995) S-(5′-Deoxy-5′-adenosyl)-1-aminoxy-4-(methylsulfonio)-2-cyclopentene (AdoMao): an irreversible inhibitor of S-adenosylmethionine decarboxylase with potent in vitro antitrypanosomal activity. J Med Chem 38(10):1770–1777

    Article  CAS  PubMed  Google Scholar 

  • Heby O, Persson L, Rentala M (2007) Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas’ disease, and leishmaniasis. Amino Acids 33(2):359–366

    Article  CAS  PubMed  Google Scholar 

  • Hughes DL (1992) In: Organic Reactions. N-Y.: John Wiley & Sons Inc. 42:337–636

    Google Scholar 

  • Kapoor P, Raj VS, Saxena S, Balaraman S, Madhubala R (2001) Effect of Leishmania donovani lipophosphoglycan on ornithine decarboxylase activity in macrophages. J Parasitol 87:1071–1076

    CAS  PubMed  Google Scholar 

  • Kaur K, Emmett K, McCann PP, Sjoerdsma A, Ullman B (1986) Effects of DL-alpha-difluoromethylornithine on Leishmania donovani promastigotes. J Protozool 33:518–521

    CAS  PubMed  Google Scholar 

  • Keinänen TA, Hyvönen T, Pankaskie MC, Vepsäläinen JJ, Eloranta TO (1994) Derivatives of 1-aminooxy-3-aminopropane as polyamine antimetabolites: stability and effects on BHK21/C13 cells. J Biochem 116:1056–1062

    PubMed  Google Scholar 

  • Khomutov AR (2002) Inhibition of enzymes of polyamine biosynthesis by substrate-like O-substituted hydroxylamines. Biochemistry (Moscow) 67:1403–1412

    Google Scholar 

  • Khomutov AR, Vepsalainen JJ, Shvetsov AS et al (1996) Synthesis of hydroxylamine analogues of polyamines. Tetrahedron 52:13751–13766

    Article  CAS  Google Scholar 

  • Lee YB, Park MH, Folk JE (1995) Diamine and triamine analogs and derivatives as inhibitors of deoxyhypusine synthase: synthesis and biological activity. J Med Chem 38:3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Lee DC, Chang BJ, Yu L et al (2004) Polymer cushions functionalized with lipid molecules. Langmuir 20:11297–11300

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Peterson PE, Carter RJ, Zhou X, Langston JA, Fisher AJ, Toney MD (2004) Crystal structures of unbound and aminooxyacetate-bound Escherichia coli γ-aminobutyrate aminotransferase. Biochemistry 43:10896–10905

    Article  CAS  PubMed  Google Scholar 

  • Maillard LT, Benohoud M, Durand P, Badet B (2005) A new supported reagent for the parallel synthesis of primary and O-alkyl hydroxylamines through a base-catalyzed Mitsunoby reaction. J Org Chem 70:6303–6312

    Article  CAS  PubMed  Google Scholar 

  • Markovic-Housley Z, Schirmer T, Hohenester E et al (1996) Crystal structure and solution studies of oxime adducts of mitochondrial aspartate aminotransferase. Eur J Biochem 236:1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Muddana SS, Peterson BR (2004) Facile synthesis of CIDs: Biotinylated estrone oximes efficiently heterodimerize estrogen receptor and streptavidin proteins in yeast three hybrid systems. Org Lett 6:1409–1412

    Article  CAS  PubMed  Google Scholar 

  • Nedospasov AA, Khomutov RM (1976) Synthesis and some properties of aminooxyalkylcelluloses. Izv Akad Nauk SSSR Ser Khim 1136–1141

  • Papadopoulou B, Roy G, Ouellette M (1992) A novel antifolate resistance gene on the amplified H circle of Leishmania. EMBO J 11:3601–3608

    CAS  PubMed  Google Scholar 

  • Peri F, Dumy P, Mutter M (1998) Chemo- and stereoselective glycosilation of hydroxylamino derivatives: a versatile approach to glycoconjugates. Tetrahedron 54:12269–12278

    Article  CAS  Google Scholar 

  • Rodriguez EC, Marcaurelle LA, Bertozzi CR (1998) Aminooxy-hydrazide, and thiosemicarbazide-functionalized saccharides: versatile reagents for glycoconjugate synthesis. J Org Chem 63:7134–7135

    Article  CAS  PubMed  Google Scholar 

  • Roy G, Dumas C, Sereno D et al (2000) Episomal and stable expression of the luciferase reporter gene for quantifying Leishmania spp Infections in macrophages and animal models. Mol Biochem Parasitol 110:195–206

    Article  CAS  PubMed  Google Scholar 

  • Salo H, Hakala H, Prakash TP et al (1999) Aminooxy functionalized oligonucleotides: preparation on-support derivatization and postsynthetic attachment to polymer support. Bioconjug Chem 10:815–823

    Article  CAS  PubMed  Google Scholar 

  • Sastre M, Galea E, Feinstein D, Reis DJ, Regunathan S (1998) Metabolism of agmatine in macrophages: modulation by lipopolysaccharide and inhibitory cytokines. Biochem J 330:1405–1409

    CAS  PubMed  Google Scholar 

  • Shimaoka H, Kuramoto H, Furukawa J et al (2007) One pot solid-phase glycoblotting and probing by transoximization for high-throughput glycomics and glycoproteomics. Chem Eur J 13:1664–1673

    Article  CAS  Google Scholar 

  • Simonian AR, Vepsalainen JJ, Khomutov AR (2006) Aminooxy analogues of spermine and their monoacetyl derivatives. Bioorg Khim 32:643–650

    CAS  PubMed  Google Scholar 

  • Singh S, Mukherjee A, Khomutov AR, Persson L, Heby O, Chatterjee M, Madhubala R (2007) Antileishmanial effect of 3-aminooxy-1-aminopropane is due to polyamine depletion. Antimicrob Agents Chemother 51:528–534

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Jhingran A, Sharma A et al (2008) Novel agmatine analogue, γ-guanidinooxypropylamine (GAPA) efficiently inhibits proliferation of Leishmania donovani by depletion of intracellular polyamine levels. Biochem Biophys Res Commun 375:168–172

    Article  CAS  PubMed  Google Scholar 

  • Theilacker W, Ebke K (1956) Darstellung von O-alkyl-hydroxylaminen. Angew Chem 68:303

    Article  CAS  Google Scholar 

  • Truce WE, Christensen LW (1968) Mass spectral of alkyl methanesulfonates. J Org Chem 33:2261–2266

    Article  CAS  Google Scholar 

  • Wallace HM, Fraser AV (2004) Inhibitors of polyamine metabolism. Amino Acids 26(4):353–365

    Article  CAS  PubMed  Google Scholar 

  • Zeeh B, Metzger H (1971) Methoden zur Herstellung und Umwandlung von Hydroxylaminen. In: Müller E (ed) Houben-Weyl, Methoden der Organischen Chemie, vol X-1. Thieme Verlag, Stuttgart, pp 1097–1279

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (project nos. 09-04-01272, 08-04-91317, and 08-04-91777), the program Molecular and Cell Biology of the Presidium of the Russian Academy of Sciences, grant from the Academy of Finland (project no. 124185), grant from the Council of Scientific and Industrial Research (CSIR), Government of India, and joint Indo-Russian DST-RFBR grant (project no. RUSP-883).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim A. Khomutov.

Additional information

M. A. Khomutov, S. Mandal, and J. Weisell equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khomutov, M.A., Mandal, S., Weisell, J. et al. Novel convenient synthesis of biologically active esters of hydroxylamine. Amino Acids 38, 509–517 (2010). https://doi.org/10.1007/s00726-009-0410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0410-0

Keywords

Navigation