Skip to main content
Log in

Effects of Cortisol and Tetrahydrocortisol on the Secondary Structure of Apolipoprotein A-I as Measured by Fourier Transform Infrared Spectroscopy

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract—

The interaction of the steroid hormone cortisol and its metabolite tetrahydrocortisol (THC) with two serum proteins, apolipoprotein AI (apoA-I) and human serum albumin (HSA), was studied in aqueous solutions at physiological pH. Using the tryptophan fluorescence quenching method, it was found that the binding constant of hormones to proteins increases in the order: apoA-I−THC < HSA−THC < apoA-I−cortisol < HSA−cortisol. The results confirm the existing point of view that albumin and apoA-I play an important role in the transport of active forms of steroid hormones. However, the use of Fourier transform infrared spectroscopy revealed the most pronounced and multidirectional changes in the secondary structure of proteins under the influence of an inactive form of the hormone, THC. Upon incubation of apoA-I in the presence of THC, a dose-dependent decrease in the content of α-helices and an increase in β-turns were observed. On the contrary, in HSA incubated with THC, the number of α-helices increased, and β-turns decreased. Similar changes were found in the structure of apoA-I incubated with cortisol. The secondary structure of HSA in the presence of cortisol did not change. It is assumed that conformational changes in apoA-I under the influence of steroid hormones can lead to a significant change in the acceptor and regulatory properties of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Gospodarowicz, D., Massoglia, S., Cheng, J., and Fujii, D.K., J. Cell Physiol., 1986, vol. 127, pp. 121–136. https://doi.org/10.1002/jcp.1041270116

    Article  CAS  PubMed  Google Scholar 

  2. Nofer, J.R., Junker, R., Pulawski, E., Fobker, M., Levkau, B., Von Eckardstein, A., Seedorf, U., Assmann, G., and Walter, M., J. Thromb. Haemost., 2001, vol. 85, pp. 730–735. https://doi.org/10.1055/s-0037-1615660

    Article  CAS  Google Scholar 

  3. Favre, G., Tazi, K.A., Le Gaillard, F., Bennis, F., Hachem, H., and Soula, G., J. Lipid Res., 1993, vol. 34, pp. 1093–1106. https://doi.org/10.1016/S0022-2275(20)37696-3

    Article  CAS  PubMed  Google Scholar 

  4. Libby, P., Miao, P., Ordovas, J.M., and Schaffer, E.J., J. Cell Physiol., 1985, vol. 124, pp. 1–8. https://doi.org/10.1002/jcp.1041240102

    Article  CAS  PubMed  Google Scholar 

  5. Gordon, S.M., Hofmann, S., Askew, D.S., and Davidson, W.S., Trends Endocrin. Met., 2011, vol. 22, pp. 9–15. https://doi.org/10.1016/j.tem.2010.10.001

    Article  CAS  Google Scholar 

  6. Collet, X., Marcel, Y.L., Tremblay, N., Lazure, C., Milne, R.W., Perret, B., and Weech, P.K., J. Lipid Res., 1997, vol. 38, pp. 634–644. https://doi.org/10.1016/S0022-2275(20)37231-X

    Article  CAS  PubMed  Google Scholar 

  7. Handwerger, S., Myers, S., Richards, R., Richardson, B., Turzai, L., Moeykins, C., Meyer, T., and Anantharamahiah, G.M., Endocrinology, 1995, vol. 136, pp. 5555–5560. https://doi.org/10.1210/en.136.12.5555

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, X. and Von Eckardstein, A., J. Huazhong. Univ. Sci. Technol. Med. Sci., 2002, vol. 22, pp. 270–272. https://doi.org/10.1007/BF02896760

    Article  CAS  Google Scholar 

  9. Usynin, I.F., Dudarev, A.N., Gorodetskaya, A.Yu., Miroshnichenko, S.M., Tkachenko, T.A., and Tkachenko, V.I., Byull. Eksp. Biol. Med., 2017, vol. 164, no. 9, pp. 285–288.

    Article  Google Scholar 

  10. Nofer, J.R., Handb. Exp. Pharmacol., 2015, vol. 224, pp. 229–256. https://doi.org/10.1007/978-3-319-09665-0_6

    Article  CAS  PubMed  Google Scholar 

  11. Usynin, I.F. and Panin, L.E., Biochemistry (Moscow), 2008, vol. 73, pp. 367–380. https://doi.org/10.1134/s0006297908040019

    Article  CAS  PubMed  Google Scholar 

  12. Panin, L.E., Tuzikov, F.V., Tuzikova, N.A., Usynin, I.F., and Gimautdinova, O.I., Russ. J. Bioorg. Chem., 2001, vol. 27, pp. 95–100. https://doi.org/10.1023/A:1011381019423

    Article  CAS  Google Scholar 

  13. Lakowicz, J.R., Principles of Fluorescence Spectroscopy, 3rd ed., Boston, MA: Springer, 2006. https://doi.org/10.1007/978-0-387-46312-4

  14. Kudryashova, E.V., Gladilin, A.K., and Levashov, A.V., Usp. Biol. Khim., 2002, vol. 42, pp. 257–294.

    CAS  Google Scholar 

  15. Stroupe, S.D., Cheng, Su-Li., and Westphal, U., Arch. Biochem. Biophys., 1975, vol. 168, pp. 473–482.

    Article  CAS  Google Scholar 

  16. Polyakov, L.M., Sumenkova, D.V., Knyazev, R.A., and Panin, L.E., Biomed. Khim., 2011, vol. 57, pp. 308–313. https://doi.org/10.18097/pbmc20115703308

    Article  CAS  Google Scholar 

  17. Gursky, O. and Atkinson, D., Proc. Natl. Acad. Sci. U. S. A., 1996, vol. 93, pp. 2991–2995. https://doi.org/10.1073/pnas.93.7.2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Belinskaia, D.A. and Goncharov, N.V., Russ. J. Bioorg. Chem., 2020, vol. 46, pp. 287–298. https://doi.org/10.31857/S0132342320030045

    Article  CAS  Google Scholar 

  19. Cham, B.E. and Knowles, B.R., Lipid Res., 1976, vol. 17, pp. 176–181. https://doi.org/10.1016/S0022-2275(20)37003-6

    Article  CAS  Google Scholar 

  20. Naik, P.N., Chimatadar, S.A., and Nandibewoor, S.T., J. Photochem. Photobiol., vol. 100, pp. 147–159. https://doi.org/10.1016/j.jphotobiol.2010.05.014

  21. Chanphai, P., Vesper, A.R., Bariyanga, J., Berube, G., and Tajmir-Riahi, H.A., J. Photochem. Photobiol., vol. 161, pp. 184–191. https://doi.org/10.1016/j.jphotobiol.2016.05.015

  22. Abu, TeirM.M., Ghithan, J.H., Darwish, S.M., and Abu-Hadidal, M.M., J. Appl. Biol. Sci., 2011, vol. 5, pp. 35–47.

    Google Scholar 

  23. Abboud, R., Charcosset, C., and Greige-Gerges, H., Chem. Phys. Lipids, 2017, vol. 207, pp. 260–270. https://doi.org/10.1016/j.chemphyslip.2017.05.011

    Article  CAS  PubMed  Google Scholar 

  24. Neault, J.F. and Tajmir-Riahi, H.A., Biochim. Biophys. Acta, 1998, vol. 1384, pp. 153–159. https://doi.org/10.1016/s0167-4838(98)00011-9

    Article  CAS  PubMed  Google Scholar 

  25. Liu, X., Shang, Y., Ren, X., and Li, H., J. Chem., 2013, vol. 2013, pp. 1–7. https://doi.org/10.1155/2013/494706

    Article  CAS  Google Scholar 

  26. Yang, H., Yang, S., Kong, J., Dong, A., and Yu, S., Nat. Protoc., 2015, vol. 10, pp. 382–396. https://doi.org/10.1038/nprot.2015.024

    Article  CAS  PubMed  Google Scholar 

  27. Abrosimova, K.V., Shulenina, O.V., and Paston, S.V., J. Phys. Conf. Ser., 2016, vol. 769, pp. 1–6. https://doi.org/10.1088/1742-6596/769/1/012016

    Article  CAS  Google Scholar 

  28. Krilov, D., Balarin, M., Kosovic, M., Gamulin, O., and Brnjas-Kraljevic, J., Spectrochim. Acta A, 2009, vol. 73, pp. 701–706. https://doi.org/10.1016/j.saa.2009.03.015

    Article  CAS  Google Scholar 

  29. Cioni, P. and Strambini, G.B., Biophys. J., 2002, vol. 82, pp. 3246–3253. https://doi.org/10.1016/S0006-3495(02)75666-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Polyanichko, A.M., Romanov, N.M., Starkova, T.Yu., Kostyleva, E.I., and Chikhirzhina, E.V., Tsitologiya, 2014, vol. 56, no. 4, pp. 316–322.

    CAS  Google Scholar 

  31. Sugio, S., Kashima, A., Mochizuki, S., Noda, M., and Kobayashi, K., Protein Eng. Des. Sel., 1999, vol. 12, pp. 439–444. https://doi.org/10.1093/protein/12.6.439

    Article  CAS  Google Scholar 

  32. Usol’tsev, D.A., Sitnikova, V.E., Nosenko, T.N., Olekhnovich, R.O., and Uspenskaya, M.V., Nauchno-Tekhn. Vestn. Inf. Tekhnol., Mekhan. Optiki, 2019, vol. 19, pp. 586–593. https://doi.org/10.17586/2226-1494-2019-19-4-586-593

    Article  Google Scholar 

  33. Bychkova, V.E., Semisotnov, G.V., Balobanov, V.A., and Finkel’shtein, A.V., Usp. Biol. Khim., 2018, vol. 58, pp. 67–100.

    Google Scholar 

  34. Zhou, H.X., Hoess, R.H., and DeGrado, W.F., Nat. Struct. Biol., 1996, vol. 3, pp. 446–451. https://doi.org/10.1038/nsb0596-446

    Article  CAS  PubMed  Google Scholar 

  35. Predki, P.F., Agrawal, V., Brunger, A.T., and Regan, L., Nat. Struct. Biol., 1996, pp. 54–58. https://doi.org/10.1038/nsb0196-54

  36. Marcelino, A.M.C. and Gierasch, L.M., Biopolymers, 2008, vol. 89, pp. 380–391. https://doi.org/10.1002/bip.20960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kong, J. and Shaoning, Y.U., Acta Biochim. Biophys. Sin., 2007, vol. 39, pp. 549–559. https://doi.org/10.1111/j.1745-7270.2007.00320.x

    Article  CAS  PubMed  Google Scholar 

  38. Misharin, A.Yu., Russ. J. Bioorg. Chem., 1998, vol. 24, pp. 497–517.

    Google Scholar 

  39. Mogilenko, D.A., Orlov, S.V., Trulioff, A.S., Ivanov, A.V., Nagumanov, V.K., Kudriavtsev, I.V., Shavva, V.S., Tanyanskiy, D.A., and Perevozchikov, A.P., FASEB J., 2012, vol. 26, pp. 2019–2030. https://doi.org/10.1096/fj.11-193946

    Article  CAS  PubMed  Google Scholar 

  40. Mills, G.L., Lane, P.A., and Weech, P.K., Laboratory Techniques in Biochemistry and Molecular Biology. A Guidebook to Lipoprotein Technique, Amsterdam: Elsevier, 1984.

    Google Scholar 

  41. Jiang, L., Hea, L., and Fountoulakis, M., J. Chromatogr., A, 2004, vol. 1023, pp. 317–320. https://doi.org/10.1016/j.chroma.2003.10.029

    Article  CAS  Google Scholar 

  42. Oberg, K.A. and Fink, A.L., Anal. Biochem., 1998, vol. 256, pp. 92–106. https://doi.org/10.1006/abio.1997.2486

    Article  CAS  PubMed  Google Scholar 

  43. Chikhirzhina, T.V., Belaya, I.A., Baranova, Yu.G., and Polyanichko, A.M., Vestn. St.-Peterb. Gos. Univ., Ser. Fiz. Khim., 2017, vol. 4, pp. 42–53. https://doi.org/10.21638/11701/spbu04.2017.106

    Article  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (topic No. 0535-2019-0030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. F. Usynin.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

The article does not contain a description of research carried out with the participation of humans or the use of animals as subjects.

Additional information

Abbreviations: apoA-I, apolipoprotein A-I; HDL, high density lipoproteins; ATR, attenuated total internal reflection; DS, disordered structures; THC, tetrahydrocortisol; HSA, human serum albumin.

Corresponding autor: phone: +7 (913) 461-43-78; +7 (383) 335-97-35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudarev, A.N., Gorodetskay, A.Y., Tkachenko, T.A. et al. Effects of Cortisol and Tetrahydrocortisol on the Secondary Structure of Apolipoprotein A-I as Measured by Fourier Transform Infrared Spectroscopy. Russ J Bioorg Chem 48, 96–104 (2022). https://doi.org/10.1134/S106816202105023X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106816202105023X

Keywords:

Navigation