Skip to main content
Log in

Identification of Tumor Dissemination Facilitating Proteins in Exosomes Associated with Blood Cells of Breast Cancer Patients

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Exosomes are important intercellular communication vehicles, secreted into body fluids by multiple cell types, including tumor cells. Exosomes stimulate angiogenesis, tumor cell migration, and invasion, as was proved in cell culture studies. Recently, it was found that some of the exosomes circulating in the blood are associated with the surface of blood cells (exosome-assCS), but their role in the dissemination of the tumor process remains unclear. We performed mass spectrometry analysis of proteomes from isolated plasma exosomes and blood cells associated exosomes of healthy females (HFs) and breast cancer patients (BCPs). Exosomes were separated using ultrafiltration and ultracentrifugation approaches; and their origin was verified using transmission electron microscopy and flow cytometry. Gene Ontology (GO) Functional Enrichment analysis via FunRich software showed that proteins previously detected in the cytoplasm, Oxford comma nucleus are predominant in the composition of plasma exosomes and exosomes-assCS. In breast cancer, a redistribution of the functions of plasma exosomes and blood cell-associated exosomes has been established: the proportion of transport, catalytic, and motor protein increases in plasma exosomes, and, conversely, the proportion of proteins that regulate transcriptional activity decreases in blood cell-associated exosomes. Also, the proportion of proteins involved in signal transduction and cellular communication decreases and the proportion of proteins involved in protein metabolism increases in both exosome fractions in the blood of breast cancer patients. Using the dbDEPC 3.0 database (database of Differently Expressed Proteins in Human Cancer), it was shown that 64% of the proteins of blood cell associated exosomes from BCPs are of tumor origin. Profiling of exosomal blood proteins using QuickGO annotations showed that the proportions of BCPs blood exosomal proteins involved in epithelial-mesenchymal transition (EMT), cell motility, invasion, and immune response are comparable in plasma exosomes and blood cell-associated exosomes. However, the proportion of proteins inhibiting these processes is 1.6–4 times lower in BCPs exosomes than in the blood exosomes of HFs. Thus, conducted proteome analysis of the blood cell associated exosomes in patients with breast cancer highlights the role of these exosomes in the dissemination of the tumor process along with plasma exosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Osaki, M. and Okada, F., Yonago Acta Med., 2019, vol. 62, pp. 182–190. https://doi.org/10.33160/yam.2019.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lawson, J., Dickman, C., Towle, R., Jabalee, J., Javer, A., and Garnis, C., Mol. Carcinog., 2019, vol. 58, pp. 376–387. https://doi.org/10.1002/mc.22935

    Article  CAS  PubMed  Google Scholar 

  3. Li, Z., Tao, Y., Wang, X., Jiang, P., Li, J., Peng, M., Zhang, X., Chen, K., Liu, H., Zhen, P., Zhu, J., Liu, X., and Liu, X., Cell Physiol. Biochem., 2018, vol. 51, pp. 610–629. https://doi.org/10.1159/000495281

    Article  CAS  PubMed  Google Scholar 

  4. Harris, D.A., Patel, S.H., Gucek, M., Hendrix, A., Westbroek, W., and Taraska, J.W., PLoS One, 2015, vol. 10. e0117495. https://doi.org/10.1371/journal.pone.0117495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, R., Wang, Y., Zhang, X., Feng, M., Ma, J., Li, J., Yang, X., Fang, F., Xia, Q., Zhang, Z., Shang, M., and Jiang, S., Mol. Cancer, 2019, vol. 18, e18. https://doi.org/10.1186/s12943-019-0948-8

    Article  Google Scholar 

  6. Li, Z., Zeng, C., Nong, Q., Long, F., Liu, J., Mu, Z., Chen, B., Wu, D., and Wu, H., Mol. Ther. Oncolytics, 2019, vol. 14, pp. 313–322. https://doi.org/10.1016/j.omto.2019.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tamkovich, S., Grigor’eva, A., Eremina, A., Tupikin, A., Kabilov, M., Chernykh, V., Vlassov, V., and Ryabchikova, E., Clin. Chem. Acta, 2019, vol. 495, pp. 529–537. https://doi.org/10.1016/j.cca.2019.05.028

    Article  CAS  Google Scholar 

  8. Overbye, A., Skotland, T., Koehler, C.J., Thiede, B., Seierstad, T., Berge, V., Sandvig, K., and Llorente, A., Oncotarget, 2015, vol. 6, pp. 30 357–30 376. https://doi.org/10.18632/oncotarget.4851

    Article  Google Scholar 

  9. Emelyanov, A., Shtam, T., Kamyshinsky, R., Garaeva, L., Verlov, N., Miliukhina, I., Kudrevatykh, A., Gavrilov, G., Zabrodskaya, Y., Pchelina, S., and Konevega, A., PLoS One, 2020, vol. 15, e0227949. https://doi.org/10.1371/journal.pone.0227949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yunusova, N.V., Patysheva, M.R., Molchanov, S.V., Zambalova, E.A., Grigor’eva, A.E., Kolomiets, L.A., Ochirov, M.O., Tamkovich, S.N., and Kondakova, I.V., Clin. Chim. Acta, 2019, vol. 494, pp. 116–122. https://doi.org/10.1016/j.cca.2019.03.1621

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, W., Ou, X., and Wu, X., Int. J. Oncol., 2019, vol. 54, pp. 1719–1733. https://doi.org/10.3892/ijo.2019.4742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xiao, H. and Wong, D.T., Anal. Chim. Acta, 2012, vol. 723, pp. 61–67. https://doi.org/10.1016/j.aca.2012.02.018

    Article  CAS  PubMed  Google Scholar 

  13. Mathieu, M., Martin-Jaular, L., Lavieu, G., and Thery, C., Nat. Cell Biol., 2019, vol. 21, pp. 9–17.

    Article  CAS  Google Scholar 

  14. Buzas, E.I., Toth, E.A., Sodar, B.W., and Szabo-Taylor, K.E., Semin. Immunol., 2018, vol. 40, pp. 453–464. https://doi.org/10.1007/s00281-018-0682-0

    Article  CAS  Google Scholar 

  15. Mamaeva, S.N., Kononova, I.V., Ruzhansky, M., and Nikiforov, P.V., Nikolaeva, N.A., Pavlov, A.N., Fedorova, N.F., Huang, J., Semenova, M.N., Barashkova, D.V., Frolova, L.S., and Maksimov, G.V., Int. J. Biomed., 2020, vol. 10, pp. 70–75. https://doi.org/10.21103/Article10(1)_OA12

    Article  Google Scholar 

  16. Tamkovich, S.N., Bakakina, Y.S., Tutanov, O.S., Somov, A.K., Kirushina, N.A., Dubovskaya, L.V., Volotovski, I.D., and Laktionov, P.P., Russ. J. Bioorg. Chem., 2017, vol. 43, pp. 126–134. https://doi.org/10.1134/S1068162017020157

    Article  CAS  Google Scholar 

  17. Tamkovich, S., Tutanov, O., Efimenko, A., Grigor’eva, A., Ryabchikova, E., Kirushina, N., Vlassov, V., Tkachuk, V., and Laktionov, P., Curr. Mol. Med., 2019, vol. 19, pp. 273–285. https://doi.org/10.2174/1566524019666190314120532

    Article  CAS  PubMed  Google Scholar 

  18. De Toro, J., Herschlik, L., Waldner, C., and Mongini, C., Front. Immunol., 2015, vol. 6, p. 203. https://doi.org/10.3389/fimmu.2015.00203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yanez-Mo, M., Siljander, P.R., Andreu, Z., Zavec, A.B., Borràs, F.E., Buzas, E.I., Buzas, K., Casal, E., Cappello, F., Carvalho, J., Colás, E., Cordeiro-da Silva, A., Fais, S., Falcon-Perez, J.M., Ghobrial, I.M., Giebel, B., Gimona, M., Graner, M., Gursel, I., Gursel, M., Heegaard, N.H., Hendrix, A., Kierulf, P., Kokubun, K., Kosanovic, M., Kralj-Iglic, V., Krämer-Albers, E.M., Laitinen, S., Lässer, C., Lener, T., Ligeti, E., Linẽ, A., Lipps, G., Llorente, A., Lötvall, J., Manček-Keber, M., Marcilla, A., Mittelbrunn, M., Nazarenko, I., Nolte-'t Hoen, E.N., Nyman, T.A., O’Driscoll, L., Olivan, M., Oliveira, C., Pállinger, É., Del Portillo, H.A., Reventós, J., Rigau, M., Rohde, E., Sammar, M., Sánchez-Madrid, F., Santarém, N., Schallmoser, K., Ostenfeld, M.S., Stoorvogel, W., Stukelj, R., Van der Grein, S.G., Vasconcelos, M.H., Wauben, M.H., and De Wever, O., J. Extracell. Vesicles, 2015, vol. 4, p. 27 066. https://doi.org/10.3402/jev.v4.27066

    Article  Google Scholar 

  20. Street, J.M., Barran, P.E., Mackay, C.L., Weidt, S., Balmforth, C., Walsh, T.S., Chalmers, R.T., Webb, D.J., and Dear, J.W., J. Transl. Med., 2012, vol. 10, p. 5. https://doi.org/10.1186/1479-5876-10-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vardaki, I., Ceder, S., Rutishauser, D., Baltatzis, G., Foukakis, T., and Panaretakis, T., Oncotarget, 2016, vol. 7, pp. 74 966–74 978.

    Article  Google Scholar 

  22. Chen, Y., Xie, Y., Xu, L., Zhan, S., Xiao, Y., Gao, Y., Wu, B., and Ge, W., Int. J. Cancer, 2017, vol. 140, pp. 900–913. https://doi.org/10.1002/ijc.30496

    Article  CAS  PubMed  Google Scholar 

  23. Nazarenko, I., Rana, S., Baumann, A., McAlear, J., Hellwig, A., Trendelenburg, M., Lochnit, G., Preissner, K.T., and Zoller, M., Cancer Res., 2010, vol. 70, pp. 1668–1678. https://doi.org/10.1158/0008-5472.CAN-09-2470

    Article  CAS  PubMed  Google Scholar 

  24. Mathivanan, S., Ji, H., and Simpson, R.J., J. Proteomics, 2010, vol. 73, pp. 1907–1920. https://doi.org/10.1016/j.jprot.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  25. Calzolari, A., Raggi, C., Deaglio, S., Sposi, N.M., Stafsnes, M., Fecchi, K., Parolini, I., Malavasi, F., Peschle, C., Sargiacomo, M., and Testa, U., J. Cell Sci., 2006, vol. 119, pp. 4486–4498. https://doi.org/10.1242/jcs.03228

    Article  CAS  PubMed  Google Scholar 

  26. Clayton, A., Turkes, A., Dewitt, S., Steadman, R., Mason, M.D., and Hallett, M.B., FASEB J., 2004, vol. 18, pp. 977–979. https://doi.org/10.1096/fj.03-1094fje

    Article  CAS  PubMed  Google Scholar 

  27. Danesh, A., Inglis, H.C., Jackman, R.P., Wu, S., Deng, X., Muench, M.O., Heitman, J.W., and Norris, P.J., Blood, 2014, vol. 123, pp. 687–696. https://doi.org/10.1182/blood-2013-10-530469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Minciacchi, V.R., Freeman, M.R., and Di Vizio, D., Semin. Cell Dev. Biol., 2015, vol. 40, pp. 41–51. https://doi.org/10.1016/j.semcdb.2015.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tamkovich, S.N., Yunusova, N.V., Somov, A.K., Afanas’ev, S.G., Kakurina, G.V., Kolegova, E.S., Tugutova, E.A., Laktionov, P.P., and Kondakova, I.V., Biochemistry (Moscow) Suppl. Ser. B: Biomed. Chem., 2018, vol. 12, pp. 151–155. https://doi.org/10.1134/S1990750818020130

    Article  Google Scholar 

  30. Tamkovich, S.N., Serdukov, D.S., Tutanov, O.S., Duzhak, T.G., and Laktionov, P.P., Russ. J. Bioorg. Chem., 2015, vol. 41, pp. 617–625. https://doi.org/10.1134/S1068162015060163

    Article  CAS  Google Scholar 

  31. Yang, Q., Zhang, Y., Cui, H., Chen, L., Zhao, Y., Lin, Y., Zhang, M., and Xie, L., Database (Oxford), 2018, vol. 2018, bay015. https://doi.org/10.1093/database/bay015

    Article  CAS  PubMed Central  Google Scholar 

  32. Pathan, M., Keerthikumar, S., Chisanga, D., Alessandro, R., Ang, C.-S., Askenase, P., Batagov, A.O., Benito-Martin, A., Camussi, G., Clayton, A., Collino, F., Di Vizio, D., Falcon-Perez, J.M., Fonseca, P., Fonseka, P., Fontana, S., Gho, Y.S., Hendrix, A., Hoen, E.N., Iraci, N., Kastaniegaard, K., Kislinger, T., Kowal, J., Kurochkin, I.V., Leonardi, T., Liang, Y., Llorente, A., Lunavat, T.R., Maji, S., Monteleone, F., Øverbye, A., Panaretakis, T., Patel, T., Peinado, H., Pluchino, S., Principe, S., Ronquist, G., Royo, F., Sahoo, S., Spinelli, C., Stensballe, A., Théry, C., van Herwijnen, M.J.C., Wauben, M., Welton, J.L., Zhao, K., and Mathivana, S., J. Extracell. Vesicles, 2017, vol. 6, e1321455. https://doi.org/10.1080/20013078.2017.1321455

    Article  Google Scholar 

  33. Binns, D., Dimmer, E., Huntley, R., Barrell, D., O’Donovan, C., and Apweiler, R., Bioinformatics, 2009, vol. 25, pp. 3045–3046. https://doi.org/10.1093/bioinformatics/btp536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

AKNOWLEDGMENTS

The authors thank the Ministry of Science and Higher Education of the Russian Federation for access to mass spectrometry equipment. The authors thank N.V. Yunusova (Tomsk Research Institute of Oncology, Tomsk) and V.E. Voitsitsky (Novosibirsk Regional Oncological Dispensary, Novosibirsk) for research assistance.

Funding

The study was carried out with the financial support of the Russian Foundation for Basic Research and the Government of the Novosibirsk Region within the framework of the scientific project No. 18-415-540012 r_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Tamkovich.

Ethics declarations

This article adheres to the principles of voluntariness and confidentiality in accordance with the fundamentals of the legislation of the Russian Federation on the protection of public health. The protocol for the study of blood samples was approved by the Ethics Committee of the Institute of Chemical Biology and Fundamental Medicine of the SB of RAS.

Conflict of Interests.

The authors declare that they have no conflict of interests.

Additional information

Translated by I. Shipounova

Abbreviations: PBS, 10 mM phoaphate buffered saline, 0.15 М NaCl, рН 7.5; exosome-assCS, blood cell surface-associated exosomes; BC, breat cancer; EMT, epithelial–mesemchymal transition.

Corresponding author: phone: +7 (383) 363-51-44.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutanov, O.S., Proskura, K.V., Grigor’eva, A.E. et al. Identification of Tumor Dissemination Facilitating Proteins in Exosomes Associated with Blood Cells of Breast Cancer Patients. Russ J Bioorg Chem 46, 1018–1033 (2020). https://doi.org/10.1134/S1068162020060357

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162020060357

Keywords:

Navigation