Skip to main content
Log in

Comparative Analyses of Human Exosome Proteomes

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Exosomes are responsible for cell-to-cell communication and serves as a valuable drug delivery vehicle. However, exosome heterogeneity, non-standardized isolation methods and proteomics/bioinformatics approaches limit its clinical applications. To better understand exosome heterogeneity, biological function and molecular mechanism of its biogenesis, secretion and uptake, techniques in proteomics or bioinformatics were applied to investigate human embryonic kidney cell (293T cell line)-derived exosome proteome and enable an integrative comparison of exosomal proteins and protein-protein interaction (PPI) networks of eleven exosome proteomes extracted from diverse human samples, including 293T (two datasets), dermal fibroblast, mesenchymal stem cell, thymic epithelial primary cell, breast cancer cell line (MDA-MB-231), patient neuroblastoma cell, plasma, saliva, serum and urine. Mapping of exosome biogenesis/secretion/uptake-related proteins onto exosome proteomes highlights exosomal origin-specific routes of exosome biogenesis/secretion/uptake and exosome-dependent intercellular communication. The finding provides insight into comparative exosome proteomes and its biogenesis, secretion and uptake, and potentially contributes to clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors declare that the data that supports the findings of this study are available in the supplementary material of this article.

Abbreviations

ESCRT:

endosomal sorting complexesrequired for transport

GDDA:

Graphlet Degree Distribution agreement

HDF:

human dermal fibroblast

HEK:

human embryonic kidney

HMSC:

human mesenchymal stem cell

HTEC:

human thymic epithelial primary cell

MS:

mass spectrometry

MVB:

multivesicular body

PPI:

protein-protein interaction

RLIs:

receptor-ligand interactions

References

  1. Stahl PD, Raposo G (2018) Exosomes and extracellular vesicles: the path forward. Essays Biochem 62:119–124

    PubMed  Google Scholar 

  2. Moradian Tehrani R, Verdi J, Noureddini M, Salehi R, Salarinia R, Mosalaei M, Simonian M, Alani B, Ghiasi MR, Jaafari MR, Mirzaei HR, Mirzaei H (2018) Mesenchymal stem cells: a new platform for targeting suicide genes in cancer. J Cell Physiol 233:3831–3845

    CAS  PubMed  Google Scholar 

  3. Borrelli DA, Yankson K, Shukla N, Vilanilam G, Ticer T, Wolfram J (2018) Extracellular vesicle therapeutics for liver disease. J Control Release 273:86–98

    CAS  PubMed  Google Scholar 

  4. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q, Evans R, Fissell WH, Patton JG, Rome LH, Burnette DT, Coffey RJ (2019) Reassessment of exosome composition. Cell 177:428–445 e418

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pascual M, Ibanez F, Guerri C (2020) Exosomes as mediators of neuron-glia communication in neuroinflammation. Neural Regen Res 15:796–801

    PubMed  Google Scholar 

  6. Damania A, Jaiman D, Teotia AK, Kumar A (2018) Mesenchymal stromal cell-derived exosome-rich fractionated secretome confers a hepatoprotective effect in liver injury. Stem Cell Res Ther 9:31

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Luther KM, Haar L, McGuinness M, Wang Y, Lynch Iv TL, Phan A, Song Y, Shen Z, Gardner G, Kuffel G, Ren X, Zilliox MJ, Jones WK (2018) Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells. J Mol Cell Cardiol 119:125–137

    CAS  PubMed  Google Scholar 

  8. Hayashi T, Hoffman MP (2017) Exosomal microRNA communication between tissues during organogenesis. RNA Biol 14:1683–1689

    PubMed  PubMed Central  Google Scholar 

  9. Zhang R, Jing Y, Zhang H, Niu Y, Liu C, Wang J, Zen K, Zhang CY, Li D (2018) Comprehensive evolutionary analysis of the major RNA-induced silencing complex members. Sci Rep 8:14189

    PubMed  PubMed Central  Google Scholar 

  10. Kim DK, Lee J, Simpson RJ, Lotvall J, Gho YS (2015) EVpedia: a community web resource for prokaryotic and eukaryotic extracellular vesicles research. Semin Cell Dev Biol 40:4–7

    CAS  PubMed  Google Scholar 

  11. Mathivanan S, Fahner CJ, Reid GE, Simpson RJ (2012) ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res 40:D1241–D1244

    CAS  PubMed  Google Scholar 

  12. Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA, Kleta R, Wang NS, Knepper MA (2009) Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol 20:363–379

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pathan M, Fonseka P, Chitti SV, Kang T, Sanwlani R, Van Deun J, Hendrix A, Mathivanan S (2019) Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res 47:D516–D519

    CAS  PubMed  Google Scholar 

  14. Jing Y, Niu Y, Liu C, Zen K, Li D (2018) In silico identification of lipid-binding alpha helices of uncoupling protein 1. Biomed Rep 9:313–317

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Clemencon B, Babot M, Trezeguet V (2013) The mitochondrial ADP/ATP carrier (SLC25 family): pathological implications of its dysfunction. Mol Aspects Med 34:485–493

    CAS  PubMed  Google Scholar 

  16. Dautant A, Meier T, Hahn A, Tribouillard-Tanvier D, di Rago JP, Kucharczyk R (2018) ATP synthase diseases of mitochondrial genetic origin. Front Physiol 9:329

    PubMed  PubMed Central  Google Scholar 

  17. Jerebtsova M, Kumari N, Xu M, de Melo GB, Niu X, Jeang KT, Nekhai S (2012) HIV-1 resistant CDK2-knockdown macrophage-like cells generated from 293T cell-derived human induced pluripotent stem cells. Biology (Basel) 1:175–195

    CAS  PubMed  Google Scholar 

  18. Kawamoto E, Park EJ, Shimaoka M (2021) Methods to study integrin functions on exosomes. Methods Mol Biol 2217:265–281

    CAS  PubMed  Google Scholar 

  19. Rosa-Fernandes L, Rocha VB, Carregari VC, Urbani A, Palmisano G (2017) A perspective on extracellular vesicles proteomics. Front Chem 5:102

    PubMed  PubMed Central  Google Scholar 

  20. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids.Curr Protoc Cell Biol3.22.1–3.22.29

  21. Choi DS, Lee JM, Park GW, Lim HW, Bang JY, Kim YK, Kwon KH, Kwon HJ, Kim KP, Gho YS (2007) Proteomic analysis of microvesicles derived from human colorectal cancer cells. J Proteome Res 6:4646–4655

    CAS  PubMed  Google Scholar 

  22. He Y, Wu X, Liu X, Yan G, Xu C (2010) LC-MS/MS analysis of ovarian cancer metastasis-related proteins using a nude mouse model: 14-3-3 zeta as a candidate biomarker. J Proteome Res 9:6180–6190

    CAS  PubMed  Google Scholar 

  23. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LS (2004) UniProt: the Universal protein knowledgebase. Nucleic Acids Res 32:D115–D119

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Razumovskaya J, Olman V, Xu D, Uberbacher EC, VerBerkmoes NC, Hettich RL, Xu Y (2004) A computational method for assessing peptide- identification reliability in tandem mass spectrometry analysis with SEQUEST. Proteomics 4:961–969

    CAS  PubMed  Google Scholar 

  25. Skogberg G, Lundberg V, Berglund M, Gudmundsdottir J, Telemo E, Lindgren S, Ekwall O (2015) Human thymic epithelial primary cells produce exosomes carrying tissue-restricted antigens. Immunol Cell Biol 93:727–734

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun Y, Huo C, Qiao Z, Shang Z, Uzzaman A, Liu S, Jiang X, Fan LY, Ji L, Guan X, Cao CX, Xiao H (2018) Comparative proteomic analysis of exosomes and microvesicles in human saliva for lung cancer. J Proteome Res 17:1101–1107

    CAS  PubMed  Google Scholar 

  27. Marimpietri D, Petretto A, Raffaghello L, Pezzolo A, Gagliani C, Tacchetti C, Mauri P, Melioli G, Pistoia V (2013) Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression. PLoS ONE 8:e75054

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N, Reissfelder C, Pilarsky C, Fraga MF, Piwnica-Worms D, Kalluri R (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523:177–182

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Karimi N, Cvjetkovic A, Jang SC, Crescitelli R, Hosseinpour Feizi MA, Nieuwland R, Lotvall J, Lasser C (2018) Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci 75:2873–2886

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lai RC, Tan SS, Teh BJ, Sze SK, Arslan F, de Kleijn DP, Choo A, Lim SK (2012) Proteolytic potential of the MSC exosome proteome: Implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteomics 2012:971907

  31. Bellavia D, Raimondo S, Calabrese G, Forte S, Cristaldi M, Patinella A, Memeo L, Manno M, Raccosta S, Diana P, Cirrincione G, Giavaresi G, Monteleone F, Fontana S, De Leo G, Alessandro R (2017) Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous leukemia cell growth. Theranostics 7:1333–1345

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gonzalez-Calero L, Martinez PJ, Martin-Lorenzo M, Baldan-Martin M, Ruiz-Hurtado G, de la Cuesta F, Calvo E, Segura J, Lopez JA, Vazquez J, Barderas MG, Ruilope LM, Vivanco F, Alvarez-Llamas G (2017) Urinary exosomes reveal protein signatures in hypertensive patients with albuminuria. Oncotarget 8:44217–44231

    PubMed  PubMed Central  Google Scholar 

  33. Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson NA, Mouradov D, Sieber OM, Simpson RJ, Salim A, Bacic A, Hill AF, Stroud DA, Ryan MT, Agbinya JI, Mariadason JM, Burgess AW, Mathivanan S (2015) FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics 15:2597–2601

    CAS  PubMed  Google Scholar 

  34. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368

    CAS  PubMed  Google Scholar 

  36. Kuchaiev O, Stevanovic A, Hayes W, Przulj N (2011) GraphCrunch 2: Software tool for network modeling, alignment and clustering. BMC Bioinformatics 12:24

    PubMed  PubMed Central  Google Scholar 

  37. Calvo SE, Clauser KR, Mootha VK (2016) MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 44:D1251–D1257

    CAS  PubMed  Google Scholar 

  38. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430:88–93

    CAS  PubMed  Google Scholar 

  39. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    CAS  PubMed  Google Scholar 

  40. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437:1173–1178

    CAS  PubMed  Google Scholar 

  41. D’Souza-Schorey C, Schorey JS (2018) Regulation and mechanisms of extracellular vesicle biogenesis and secretion. Essays Biochem 62:125–133

    PubMed  Google Scholar 

  42. Pedrioli G, Piovesana E, Vacchi E, Balbi C (2021) Extracellular vesicles as promising carriers in drug delivery: considerations from a cell biologist’s perspective. Biology (Basel) 10:376

    CAS  PubMed  Google Scholar 

  43. Li P, Kaslan M, Lee SH, Yao J, Gao Z (2017) Progress in exosome isolation techniques. Theranostics 7:789–804

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gho YS, Lee C (2017) Emergent properties of extracellular vesicles: a holistic approach to decode the complexity of intercellular communication networks. Mol Biosyst 13:1291–1296

    CAS  PubMed  Google Scholar 

  45. Miryala SK, Anbarasu A, Ramaiah S (2018) Discerning molecular interactions: a comprehensive review on biomolecular interaction databases and network analysis tools. Gene 642:84–94

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant numbers 31470716, 31000323 and 31070672) and the Natural Science Foundation of Jiangsu Province (grant number BK20131272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghai Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhang, H., Gu, H. et al. Comparative Analyses of Human Exosome Proteomes. Protein J 42, 365–373 (2023). https://doi.org/10.1007/s10930-023-10100-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10100-0

Keywords

Navigation