Skip to main content
Log in

Generation of Hybridomas Producing Monoclonal Antibodies to the NS1 Protein of the Zika Virus

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Hybridomas producing monoclonal antibodies (mABs) to the recombinant protein NS1 of the Zika virus synthesized in human embryonic kidney HEK293 (ZV293) cells have been obtained. The specificity of antibodies has been examined by the enzyme-linked immunosorbent assay (ELISA) using the similarly synthesized NS1 proteins of flaviviruses: the Dengue 1–4 serotype virus, Japanese encephalitis virus, yellow fever virus, tick-borne encephalitis virus, and the West Nile fever virus. Two types of hybridomas whose mABs interact with thermolabile (mABs 2F6 and 3F3) and thermostable epitopes (mABs 1B9, 6D7, and 6F2) of the NS1ZV protein have been selected. It has been shown that the 3F3 mAB, which is specific to the thermolabile determinant, can be used as both binding and detecting antibodies in the sandwich ELISA. Based on the 3F3 mAB, an experimental immunochromatographic test for the detection of the NS1ZV antigen has been developed. It has also been found that mABs 1B9, 6D7, and 6F2 against thermostable epitopes of the NS1 protein specifically recognize the NS1ZV protein after its heating for 15 min to 98°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

ELISA:

enzymelinked immunosorbent assay

IC test:

immunochromatographic test

CG:

colloid gold

mAB:

monoclonal antibody

RT-PCR:

reverse transcription polymerase chain reaction

PEG:

polyethylene glycol

PBS–T:

0.1 M phosphate-buffered saline with 0.5% Twin-20

HAT:

a mixture of hypoxanthine, aminopterin, and thymidine

НТ:

a mixture of hypoxanthine and thymidine

NR:

neutralization reaction: NS1ZV293, the recombinant protein NS1 of the Zika virus, synthesized in human embryonic kidney cell line HEK293

NS1ZVE. сoli :

the recombinant protein NS1 of the Zika virus, synthesized in E. сoli

ZVVero:

lysate of Vero cells infected with the Zika virus

References

  1. Malone, R.W., Homan, J., Callahan, M.V., Glasspool-Malone, J., Damodaran, L., Schneider, A.D.B., Zimler, R., Talton, J., Cobb, R.R., Ruzic, I., Smith-Gagen, J., Janies, D., and Wilson, J., PLoS Negl. Trop. Dis., 2016, vol. 10, no. 3. e0004530. doi 10.1371/journal. pntd.0004530

    Google Scholar 

  2. World Health Organization. Zika Virus Disease, Interim case definition, World Health Organization, 2016. www.who.int/csr/disease/zika/case-definition/en/.

  3. Bingham, A.M., Cone, M., Mock, V., Heberlein-Larson, L., Stanek, D., and Blackmore, C., MMWR Morb. Mortal Wkly Rep., 2016, vol. 65, no. 18, pp. 475–478.

    Article  PubMed  Google Scholar 

  4. Gourinat, A.C., O’Connor, O., Calvez, E., Goarant, C., and Dupont-Rouzeyrol, M., Emerg. Infect. Dis., 2015, vol. 21, no. 1, pp. 84–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Corbett, K.S., Katzelnick, L., Tissera, H., Amerasinghe, A., de Silva, A.D., and de Silva, A.M., J. Infect. Dis., 2015, vol. 211, no. 4, pp. 590–599.

    Article  CAS  PubMed  Google Scholar 

  6. Shan, C., Xie, X., Barrett, A.D.T., Garcia-Blanc, M.A., Tesh, R.B., Vasconcelos, P.F.D.C., Vasilakis, N., Weaver, S.C., and Shi, P.Y., ACS Infect. Dis., 2016, vol. 2, 2016, pp. 170–172.

    Google Scholar 

  7. Lanciotti, R.S., Kosoy, O.L., Laven, J.J., Velez, J.O., Lambert, A.J., Johnson, A.J., Stanfield, S.M., and Duffy, M.R., Emerg. Infect. Dis., 2008, vol. 14, no. 8, pp. 1232–1239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stettler, K., Beltramello, M., Espinosa, D.A., Graham, V., Cassotta, A., Bianchi, S., Vanzetta, F., Minola, A., Jaconi, S., Mele, F., Foglierini, M., Pedotti, M., Simonelli, L., Dowall, S., Atkinson, B., Percivalle, E., Simmons, C.P., Varani, L., Blum, J., Baldanti, F., Cameroni, E., Hewson, R., Harris, E., Lanzavecchia, A., Sallusto, F., and Corti, D., Science, 2016, vol. 353, pp. 823–826.

    Article  CAS  PubMed  Google Scholar 

  9. Calvet, G.A., Santos, F.B., and Sequeira, P.C., Curr. Opin. Infect. Dis., 2016, vol. 29, pp. 446–459.

    Article  Google Scholar 

  10. Rocha, L.B., Alves, R.P.S., Caetano, B.A., Pereira, L.R., Mitsunari, T., Amorim, J.H., Polatto, J.M., Botosso, V.F., Gallina, N.M.F., Palacios, R., Precioso, A.R., Granato, C.F.H., Oliveira, D.B.L., Da Silveira, V.B., Luz, D., Ferreira, L.C.S., and Piazza, R.M.F., Antibodies, 2017, vol. 6, p. 14. doi 10.3390/antib6040014

    Article  CAS  PubMed Central  Google Scholar 

  11. Okabayashi, T., Sasaki, T., Masrinoul, P., Chantawat, N., Yoksan, S., Nitatpattana, N., Chusri, S., Vargas, R.E.M., Grandadam, M., Brey, P.T., Soegijanto, S., Mulyantno, K.C., Churrotin, S., Kotaki, T., Faye, O., Faye, O., Sow, A., Sall, A.A., Puiprom, O., Chaichana, P., Kurosu, T., Kato, S., Kosaka, M., Ramasoota, P., and Ikuta, K., J. Clin. Microbiol., 2015, vol. 53, no. 2, pp. 382–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hang, V.T., Nguyet, N.M., Trung, D.T., Tricou, V., Yoksan, S., Dung, N.M., Van Ngoc, T., Hien, T.T., Farrar, J., Wills, B., and Simmons, C.P., PLoS Negl. Trop. Dis., 2009, vol. 3, no. 1, p. e360. doi 10.1371/journal.pntd.0000360

    Article  CAS  PubMed  Google Scholar 

  13. Blacksell, S.D., Jarman, R.G., Bailey, M.S., Tanganuchitcharnchai, A., Jenjaroen, K., Gibbons, R.V., Paris, D.H., Premaratna, R., de Silva, H.J., Lalloo, D.G., and Day, N.P., Clin. Vaccine Immunol., 2011, vol. 18, no. 12, pp. 2095–2101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huhtamo, E., Hasu, E., Uzcategui, N.Y., Erra, E., Nikkari, S., Kantele, A., Vapalahti, O., and Piiparinen, H., J. Clin. Virol., 2010, vol. 47, no. 1, pp. 49–53.

    Article  CAS  PubMed  Google Scholar 

  15. Nowinski, R.C., Lostrom, M.E., Tam, M.R., Stone, M.R., and Burnette, W.N., Virology, 1979, vol. 93, no. 1, pp. 111–126.

    Article  CAS  PubMed  Google Scholar 

  16. Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  17. Handly, D.A., Methods for synthesis of colloidal gold, in Colloidal Gold, Hayat, M.A., Ed., London: Academic Press, 1989, vol. 1, pp. 14–32.

    Google Scholar 

  18. Hermanson, G.T., Bioconjugate Techniques, London: Elsevier, 2008, 2nd ed.

    Google Scholar 

  19. Oliver, C., Methods Mol. Biol., 1994, vol. 34, pp. 321–328.

    CAS  PubMed  Google Scholar 

  20. Fedyukina, G.N., Vetchinin, S.S., Baranova, E.V., Rudnitskii, S.Yu., Solov’ev, P.V., Kolosova, N.V., and Biketov, S.F., Biotekhnologiya, 2015, no. 1, pp. 85–92.

    Article  Google Scholar 

  21. Blitvich, B.J., Scanlon, D., Shiell, B.J., Mackenzie, J.S., Pham, K., and Hall, R.A., J. Gen. Virol., 2001, vol. 82, no. 9, pp. 2251–2256.

    Article  CAS  PubMed  Google Scholar 

  22. Lisowska, E., Cell. Mol. Life Sci., 2002, vol. 59, no. 3, pp. 445–455.

    Article  CAS  PubMed  Google Scholar 

  23. Dowling, W., Thompson, E., Badger, C., Mellquist, J.L., Garrison, A.R., Smith, J.M., Paragas, J., Hogan, R.J., and Schmaljohn, C., J. Virol., 2007, vol. 81, no. 4, pp. 1821–1837.

    Article  CAS  PubMed  Google Scholar 

  24. Gavrilov, B.K., Rogers, K., Fernandez-Sainz, I.J., Holinka, L.G., Borca, M.V., and Risatti, G.R., Virology, 2011, vol. 420, no. 2, pp. 135–145.

    Article  CAS  PubMed  Google Scholar 

  25. Bu, G., Zhang, N., and Chen, F., Food Res. Int., 2015, vol. 76, no. 3, pp. 511–517.

    Article  CAS  PubMed  Google Scholar 

  26. Sun, X., Jayaraman, A., Maniprasad, P., Raman, R., Houser, K.V., Pappas, C., Zeng, H., Sasisekharan, R., Katz, J.M., and Tumpey, T.M., J. Virol., 2013, vol. 87, no. 15, pp. 8756–8766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song, H., Qi, J., Haywood, J., Shi, Y., and Gao, G.F., Nat. Struct. Mol. Biol., 2016, vol. 23, no. 5, pp. 456–458.

    Article  CAS  PubMed  Google Scholar 

  28. Haddow, A.D., Nasar, F., Guzman, H., Ponlawat, A., Jarman, R.G., Tesh, R.B., and Weaver, S.C., PLoS Negl.Trop. Dis., 2016, vol. 10, no. 10, p. e0005083. doi 10.1371/journal.pntd.0005083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Vetchinin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vetchinin, S.S., Shevyakov, A.G., Fedyukina, G.N. et al. Generation of Hybridomas Producing Monoclonal Antibodies to the NS1 Protein of the Zika Virus. Russ J Bioorg Chem 44, 745–754 (2018). https://doi.org/10.1134/S1068162019010187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162019010187

Keywords

Navigation