Skip to main content
Log in

The Effects of Rock Chemistry and Ecological Factors on Plant Diversity in the Tokatlı Canyon of Turkey

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Species diversity, edaphic and geological rock properties were investigated in the Tokatlı Canyon. Quercus infectoria-Platanus orientalis was identified as the plant community with the highest species diversity and richness. High concentrations of N\({\text{H}}_{4}^{ + }\) and N\({\text{O}}_{3}^{ - }\) were found in moderately sloping areas in the north-east in the Tokatlı Canyon. Available P contents tend to increase towards the Mediterranean communities. Arbutus andrachne-Cistus creticus plant communities, found in the study area (especially on central and higher slopes of the canyon) are an example of Mediterranean relict groupings formed by Mediterranean plants. In Canonical Correspondence Analysis (CCA) available P, pH, K+, Mg++, EC and N\({\text{O}}_{3}^{ - }\) in the soil and TiO2, Al2O3, MgO and K2O in the rock are the factors affecting species diversity and distribution in the Tokatlı Canyon area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Işık, D. and Uğurlu, E., Bitki Kommunitelerinde Beta Çeşitliliği, Celal Bayar Üniversitesi Eğitim Fakültesi Dergisi, 2011, pp. 154–171.

    Google Scholar 

  2. Hunter, M.L., Biological diversity, in Maintaining Biodiversity in Forest Ecosystems, Hunter, M.L., Ed., Cambridge: Cambridge Univ. Press, 1999, pp. 3–21.

    Book  Google Scholar 

  3. Bengtsson, J., Nilsson. S.G., Franc, A., and Menozzi, P., Biodiversity, disturbances, ecosystem function and management of European forest, Forest Ecol. Manag., 2000, vol. 32, pp. 39–50.

    Article  Google Scholar 

  4. Arkadani, M.R., Ecology, Tehran: Tehran Univ. Press, 2009.

    Google Scholar 

  5. Sebastià, M.T., De Bello, F., Puig, L., and Taull, M., Grazing as a factor structuring grasslands in the Pyrenees, Appl. Veget. Sci., 2008, vol. 11, no. 2, pp. 215–222.

    Article  Google Scholar 

  6. Dilts, T., Steele, M., Engler, J. D., Pelton, E.M., Jepsen, S.J., McKnight, S., and Craver, D.R., Host plants and climate structure habitat associations of the western monarch butterfly, Front. Ecol. Evol., 2019, vol. 7, p. 188.

    Article  Google Scholar 

  7. Tukiainen, H., Bailey, J.J., Field, R., Kangas, K., and Hjort, J., Combining geodiversity with climate and topography to account for threatened species richness, Conserv. Biol., 2017, vol. 31, no. 2, pp. 364–375.

    Article  PubMed  Google Scholar 

  8. Australian Natural Heritage Charter, Canberra, Australia: Australian Heritage Commission, 2002.

  9. Parks, K.E. and Mulligan, M., On the relationship between a resource-based measure of geodiversity and broad scale biodiversity patterns, Biodivers. Conserv., 2010, vol. 19, pp. 2751–2766.

    Article  Google Scholar 

  10. Harner, R.F. and Harper, K.T., The role of area, heterogeneity, and favorability in plant species diversity of pinyon–juniper ecosystems, Ecology, 1976, vol. 57, pp. 1254–1263.

    Article  Google Scholar 

  11. Swanson, F.J., Kratz, T.K., Caine, N., and Woodmansee, R.G., Landform effects on ecosystems pattern and processes. Bioscience, 1988, vol. 38, pp. 92–98.

    Article  Google Scholar 

  12. Nichols, W.F., Killingbeck, K.T., and August, P.V., The influence of geomorphological heterogeneity on biodiversity: 2. A landscape perspective, Conserv Biol., 1988, vol. 12, pp. 371–379.

    Google Scholar 

  13. Hjort, J., Heikkinen, R.K., and Luoto, M., Inclusion of explicit measures of geodiversity improve biodiversity models in a boreal landscape, Biodivers. Conserv., 2012, vol. 21, no. 13, pp. 3487–3506.

    Article  Google Scholar 

  14. Tuomisto, H., Ruokolainen, K., Poulsen, A.D., Moran, R.C., Quintana, C., Cañas, G., and Celi, J., Distribution and diversity of pteridophytes and Melastomataceae along edaphic gradients in Yasuni National Park, Ecuadorian Amazonia, Biotropica, 2002, vol. 34, no. 4, pp. 516–533.

    Google Scholar 

  15. Khalik, K.A., El-Sheikh, M., and El-Aidarous, A., Floristic diversity and vegetation analysis of Wadi Al-Noman, Mecca, Saudi Arabia, Turk. J. Bot., 2013, vol. 37, no. 5, pp. 894–907.

    Article  Google Scholar 

  16. Xu, Y., Chen, Y., Li, W., Fu, A., Ma, X., Gui, D., and Chen, Y., Distribution pattern of plant species diversity in the mountainous region of Ili River Valley, Xinjiang.Environ. Monit. Assess., 2011, vol. 177, pp. 681–694.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, L., Zhang, J.T., Shangguan, T.L., and Fan, L.S., Species diversity of mountain meadow of Lishan and the relation with the soil physicochemical properties, Chin. J. Appl. Environ. Biol., 2004, vol. 10, no. 1, pp. 18–22.

    CAS  Google Scholar 

  18. Ketin, İ., Anadolu’nun tektonik birlikleri, Maden Tetkik ve Arama Dergisi, 1966, vol. 66, pp. 20–34.

    Google Scholar 

  19. Robinson, A.G., Banks, C.J., Rutherford, M.M., and Hirst, J.P.P., Stratigraphic and structural development of the Eastern Pontides, Turkey, J. Geol. Soc., 1995, vol. 152, no. 5, pp. 861–872.

    Article  Google Scholar 

  20. Okay, A.I., and Sahinturk, O., Geology of the Eastern Pontides, in AAPG Memoir68:Regional and Petroleum Geology of the Black Sea and Surrounding Region, A.G. Robinson, Ed., 1997, pp. 291–311.

    Google Scholar 

  21. Yılmaz, Y., Geology of western Anatolia, in Active Tectonics of NW Anatolia: The Marmara Poly-Project, Schindler, C. and Pfister, M, Eds., Zurich: VDF, ETH, 1997, pp. 31–54.

  22. Timur, E., and Aksay, A., 1/100.000 Ölçekli Türkiye Jeoloji Haritaları Zonguldak F29 Paftası (1/100.000 Scaled Geological Map of Turkey-Zonguldak F29 Section), Geological Research Department, MTA (General Directorate of Mineral Research and Exploration), no. 30, 2002.

  23. Türker, N., ve Çetinkaya, A., Batı Karadeniz Bölümü Ekoturizm Potansiyeli, Detay Yayıncılık, Ankara. Uygulamaları, Ankara: Palme Yayınevi, 2009.

  24. Davis, P.H., Flora of Turkey and the East Aegean Island, vols. 1–10, Edinburgh: Edinburgh Univ. Press, 1965–1988.

  25. Beers, T.W., Dress, P.E., and Wensel, L.C., Aspect transformation in site productivity research, J. Forestry, 1966, vol. 64, pp. 691–692.

    Google Scholar 

  26. Whıttaker, R.H., Evolution of species diversity in land communities, in Evolutionary Biology, vol. 10, Hecht, M.K., Streere, W.C., and Wallace, B., Eds., New York: Plenum, 1977, pp. 1–67.

  27. Diagnosis and Improvement of Saline and Alkali Soils, Richards, L.A., Ed., Washington, D.C: United States Department of Agriculture, 1954.

    Google Scholar 

  28. Walkley, A. and Black, L.A., An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method, Soil Sci., 1934, vol. 37, no. 1, pp. 29–38.

    Article  CAS  Google Scholar 

  29. Olsen, S.R., Cole, C.V., Watanabe, F.S., and Dean, L.A., Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate, Washington D.C: United States Department of Agriculture, 1954.

    Google Scholar 

  30. Kaçar, B., Toprak Analizleri, Ankara: Nobel Yayın Dağıtım, 2009.

    Google Scholar 

  31. Dickson, J.A.D., Carbonate identification and genesis as revealed by staining, J. Sediment. Petrol., 1966, vol. 36, no. 2, pp. 491–505.

    Google Scholar 

  32. Rahman, M.A., Rashid, M.H., and Wilcock, C.C., Diversity, ecology, distribution and ethnobotany of the Apocynaceae of Bangladesh, Bangladesh J. Plant Taxon., 2000, vol. 7, no. 2, pp. 57–76.

    Google Scholar 

  33. Tichy, L., Milan, C., Statistical determination of diagnostic species for site groups of unequal size, J. Veget. Sci., 2006, vol. 17, no. 6, pp. 809–818.

    Article  Google Scholar 

  34. Ter Braak, C.J., Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis, Ecology, 1986, vol. 67, no. 5, pp. 1167–1179.

    Article  Google Scholar 

  35. Scognamiglio, M., D’abrosca, B., Esposito, A., Pacifico, S., Monaco, P., and Fiorentino, A., Plant growth inhibitors: Allelopathic role or phytotoxic effects? Focus on Mediterranean biomes, Phytochem. Rev., 2013, vol. 12, no. 4, pp. 803–830.

    Article  CAS  Google Scholar 

  36. Ahokas, H., Acidification of forest top soils in 60 years to the southwest of Helsinki, Forest Ecol. Manag., 1997, vol. 94, nos. 1–3, pp. 187–193.

    Article  Google Scholar 

  37. Abourouh, M. and Najim, L., Culture in vitro de fragments de cotyledons des plantules de Cedrus atlantica Manetti, Saussurea, 1990, vol. 21, pp. 75–80.

    Google Scholar 

  38. Nordin, A., Högberg, P., and Näsholm, T., Soil nitrogen form and plant nitrogen uptake along a boreal forest productivity gradient, Oecologia, 2001, vol. 129, no. 1, pp. 125–132.

    Article  PubMed  Google Scholar 

  39. Chapin, F.S., Iii Moilanen, L., and Kielland, K., Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge, Nature, 1993, vol. 361, pp. 150–153.

    Article  CAS  Google Scholar 

  40. Henkin, Z., Selıgman, N.G, Kafkafı, U., and Noy-Meır, I., Effective growing days: A simple predictive model of response of herbaceous plant growth in a Mediterranean ecosystem to variation in rainfall and phosphorus availability, J. Ecol., 1998, vol. 86, pp. 137–148.

    Article  Google Scholar 

  41. Sardans, J., Rodà, F., and Peñuelas, J., Phosphorus limitation and competitive capacities of Pinus halepensis and Quercus ilex subsp. rotundifolia on different soils, Plant Ecol., 2004, vol. 174, pp. 305–317.

    Article  Google Scholar 

  42. Sardans, J., Rodà, F., and Peñuelas, J., Effects of water and a nutrient pulse supply on Rosmarinus officinalis growth, nutrient content and flowering in the field, Environ. Exp. Bot., 2005, vol. 53, pp. 1–11.

    Article  CAS  Google Scholar 

  43. Deacon, H.J., The comparative evolution of Mediterranean-type ecosystems: A southern perspective, in Mediterranean Type Ecosystems: The Role of Nutrients, Kruger, F.J., Mitchell, F.J., and Jarvis, J.U.M., Eds., Berlin: Springer, 1983, pp. 3–40.

    Google Scholar 

  44. Minerbi, S., What effect does climate have on the appearance of the new type of forest damage?, Dendronatura, 1987, vol. 8, pp. 9–24.

    Google Scholar 

  45. Arai, Y., and Sparks, D.L., Phosphate reaction dynamics in soils and soil components: A multiscale approach, Adv. Agron., 2007, vol. 94, pp. 135–179.

    Article  CAS  Google Scholar 

  46. Hinsinger, P., Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review, Plant Soil, 2001, vol. 237, no. 2, pp. 173–195.

    Article  CAS  Google Scholar 

  47. Meliyo, J.L., Balthazar, M.M., Kimaro, D.N., Massawe, B.H.J., Proches, H., Mulungu L., and Gulinck, H., Variability of soil organic carbon with landforms and land use in the Usambara Mountains of Tanzania, J. Soil Sci. Environ. Manag., 2016, vol. 7, no. 9, pp. 123–132.

    CAS  Google Scholar 

  48. Baldock, J.A., Nelson, P.N., Soil organic matter, in Handbook of Soil Science, Li, Y., Huang, P.M., and Sumner, M.E., Eds., Boca Raton, FL: CRC Press, 2000, pp. B25–B84.

    Google Scholar 

  49. McClendon, J.H., Elemental abundance as a factor of the origin of mineral nutrient requirements, J. Mol. Evol., 1976, vol. 8, pp. 175–195.

    Article  CAS  PubMed  Google Scholar 

  50. Pais, I., Criteria of essentiality, beneficiality and toxicity: What is too little and too much?, in Cycling of the Nutritive Element in Geo- and Biosphere, Pais, I., Ed., Budapest, Hungary: Univ. Horticult. Food Sci. Press, 1991, pp. 59–77.

    Google Scholar 

  51. Cottle, R.A., Linking Geology and Biodiversity, English Nature, 2004.

    Google Scholar 

  52. Goudie, A.S., Organic agency in calcrete development, J. Arid Environ., 1996, vol. 32, pp. 103–110.

    Article  Google Scholar 

  53. Tavşanoğlu, Ç. and Gürkan, B., Akdeniz havzasında bitkilerin kuraklık ve yangına uyumları, Ot Sistematik Botanik Dergisi, 2004, vol. 11, no. 1, pp. 119–132.

    Google Scholar 

  54. Tuomisto, H., Zuquim, G., and Cárdenas, G., Species richness and diversity along edaphic and climatic gradients in Amazonia, Ecography, 2014, vol. 37, no. 11, pp. 1034–1046.

    Google Scholar 

  55. Tarrega, R, Luis-Calabuig, E, and Alonso, I., Space–time heterogeneity in the recovery after experimental burning and cutting in a Cistus laurifolius shrubland, Plant Ecol., 1997, vol. 129, pp. 179–187.

    Article  Google Scholar 

  56. De Dato, G., Pellızzaro, G., Cesaraccıo, C., Sırca, C., De Angelıs, P., Duce, P., and Scarascıa Mugnozza, G., Effects of warmer and drier climate conditions on plant composition and biomass production in a Mediterranean shrubland community, For. Biogeosci.Forestry, 2008, vol. 1, no. 1, p. 39.

    Google Scholar 

  57. Sarı, B. and Ören, M., Safranbolu İlçesi (Karabük) Briyofit Florası, Kastamonu Üniversitesi Orman Fakültesi Dergisi, 2016, vol. 16, no. 1.

  58. Körner, C., Sarris, D., and Christodoulakis., D., Long-term increase in climatic dryness in the East-Mediterranean as evidenced for the island of Samos, Region. Environ. Change, 2005, vol. 5, pp. 27–36.

    Article  Google Scholar 

Download references

Funding

This work was supported by the ODU BAP [under grant number AR-1368]. The authors would like to extend their thanks to the Scientific Research Unit of Ordu University for the financial support it provided which enabled this study to proceed within the framework of project number AR-1368.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevda Türkiş.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevda Türkiş, Elmas, E. & Özyurt, M. The Effects of Rock Chemistry and Ecological Factors on Plant Diversity in the Tokatlı Canyon of Turkey. Russ J Ecol 51, 452–465 (2020). https://doi.org/10.1134/S1067413620050124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413620050124

Keywords:

Navigation