Skip to main content
Log in

The Effect of Vaccinium vitis-idaea on Properties of Mountain-Meadow Soil under Alpine Lichen Heath

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract—The study of the effect of mycorrhiza symbiosis on the transformation of carbon and nitrogen compounds in soils is important in view of the necessity to predict variations in the cycles of nutrients under changing environmental conditions. It has been shown that the ericaceous dwarf shrub Vaccinium vitis-idaea characterized by ericoid mycorrhiza, which releases oxidative and hydrolytic enzymes into the soil, has an effect on the properties of mountain-meadow soil in the alpine phytocenosis. In the presence of V. vitis-idaea, the soil is characterized by increased acidity; higher contents of labile organic matter carbon, microbial biomass nitrogen, and available phosphorus; and higher microbial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Onipchenko, V.G., Makarov, M.I., and van der Maarel, E., Influence of alpine plants on soil nutrient concentrations in a monoculture experiment, Folia Geobot., 2001, vol. 36, pp. 225‒241.

    Article  Google Scholar 

  2. Courty, P.-E., Buee, M., Diedhiou, A.G., et al., The role of ectomycorrhizal communities in forest ecosystem processes: New perspectives and emerging concepts, Soil Biol. Biochem., 2010, vol. 42, pp. 679‒698.

    Article  CAS  Google Scholar 

  3. Phillips, R.P., Brzostek, E., and Midgley, M.G., The mycorrhizal-associated nutrient economy: A new framework for predicting carbon–nutrient couplings in temperate forests, New Phytol., 2013, vol. 199, pp. 41–51.

    Article  CAS  PubMed  Google Scholar 

  4. van der Heijden, M.G.A., Martin, F.M., Selosse, M.-A., and Sanders, I.R., Mycorrhizal ecology and evolution: The past, the present, and the future, New Phytol., 2015, vol. 205, pp. 1406–1423.

    Article  CAS  PubMed  Google Scholar 

  5. Orwin, K.H., Kirschbaum, M.U.F., St, John, M.G., and Dickie, I.A., Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: A model-based assessment, Ecol. Lett., 2011, vol. 14, pp. 493–502.

    Article  PubMed  Google Scholar 

  6. Averill, C., Turner, B.L., and Finzi, A.C., Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage, Nature, 2014, vol. 505, pp. 543–546.

    Article  CAS  PubMed  Google Scholar 

  7. Lin, G., McCormack, M.L., Ma, C., and Guo, D., Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests, New Phytol., 2017, vol. 213, pp. 1440–1451.

    Article  CAS  PubMed  Google Scholar 

  8. Liese, R., Lubbe, T., Albers, N.W., and Meier, I.C., The mycorrhizal type governs root exudation and N uptake of temperate tree species, Tree Physiol., 2017, vol. 38, pp. 83–95.

    Article  CAS  Google Scholar 

  9. Read, D.J., Leake, J.R., and Perez-Moreno, J., Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes, Can. J. Bot., 2004, vol. 82, pp. 1243–1263.

    Article  CAS  Google Scholar 

  10. Wurzburger, N. and Hendrick, R.L., Rhododendron thickets alter N cycling and soil extracellular enzyme activities in southern Appalachian hardwood forests, Pedobiologia, 2007, vol. 50, pp. 563–576.

    Article  CAS  Google Scholar 

  11. Wurzburger, N. and Hendrick, R.L., Plant litter chemistry and mycorrhizal roots promote a nitrogen feedback in a temperate forest, J. Ecol., 2009, vol. 97, pp. 528–536.

    Article  CAS  Google Scholar 

  12. Kraus, T.E.C., Dahlgren, R.A., and Zasoski, R.J., Tannins in nutrient dynamics of forest ecosystems: A review, Plant Soil, 2003, vol. 256, pp. 41–66.

    Article  CAS  Google Scholar 

  13. Mallik, A.U., Conifer regeneration problems in boreal and temperate forests with ericaceous understories: Role of disturbance, seedbed limitation, and keystone species change, Crit. Rev. Plant Sci., 2003, vol. 22, pp. 341–366.

    Article  Google Scholar 

  14. Clemmensen, K.E., Finlay, R.D., Dahlberg, A., et al., Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests, New Phytol., 2015, vol. 205, pp. 1525–1536.

    Article  CAS  PubMed  Google Scholar 

  15. Post, E., Forchhammer, M.C., Bret-Harte, M.S., et al., Ecological dynamics across the arctic associated with recent climate change, Science, 2009, vol. 325, pp. 1355–1358.

    Article  CAS  PubMed  Google Scholar 

  16. Kizilova, A.K., Stepanov, A.L., and Makarov, M.I., Biological activity of alpine mountain-meadow soils in the Teberda Reserve, Euras. Soil Sci., 2006, vol. 39, no. 1, pp. 67–70.

    Article  Google Scholar 

  17. Makarov, M.I., Leoshkina, N.A., Ermak, A.A., and Malysheva, T.I., Seasonal dynamics of the mineral nitrogen forms in mountain-meadow alpine soil, Euras. Soil Sci., 2010, vol. 43, no. 8. pp. 905–913.

    Article  Google Scholar 

  18. Makarov, M.I., Volkov, A.V., Malysheva, T.I., and Onipchenko, V.G., Phosphorus, nitrogen, and carbon in the soils of subalpine and alpine altitudinal belts of the Teberda Nature Reserve, Euras. Soil Sci., 2001, vol. 34, no. 1, pp. 52–60.

    Google Scholar 

  19. Makarov, M.I., Organic phosphorus compounds in alpine soils of the Northwestern Caucasus, Euras. Soil Sci., 1998, vol. 31, no. 7, pp. 778‒786.

    Google Scholar 

  20. Brooks, P.C., Landman, A., Pruden, G., and Jenkinson, D.S., Chloroform fumigation and release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen, Soil Biol. Biochem., 1985, vol. 17, pp. 837–842.

    Article  Google Scholar 

  21. Vance, E.D., Brookes, P.C., and Jenkinson, D.S., An extraction method for measuring soil microbial biomass C, Soil Biol. Biochem., 1987, vol. 19, pp. 703–707.

    Article  CAS  Google Scholar 

  22. Kandeler, E., Ammonium, in Methods in Soil Biology, Berlin: Springer, 1996, pp. 406‒408.

    Google Scholar 

  23. Dorich, R.A. and Nelson, D.W., Evaluation of manual cadmium reduction methods for determination of nitrate in potassium chloride extracts of soils, Soil Sci. Soc. Am. J., 1984, vol. 48, pp. 72–75.

    Article  CAS  Google Scholar 

  24. Anderson, J.P.E., A physiological method for the quantitative measurement of microbial biomass in soils, Soil Biol. Biochem., 1978, vol. 10, pp. 215–221.

    Article  CAS  Google Scholar 

  25. Makarov, M.I., Malysheva, T.I., Menyailo, O.V., et al., Effect of K2SO4 concentration on extractability and isotope signature (δ13C and δ15N) of soil C and N fractions, Eur. J. Soil Sci., 2015, vol. 66, pp. 417–426.

    Article  CAS  Google Scholar 

  26. Grubb, P.J., Green, H.E., and Merrifield, R.C.J., The ecology of chalk heath: Its relevance to the calcicole–calcifuge and soil acidification problems, J. Ecol., 1969, vol. 57, pp. 175–212.

    Article  Google Scholar 

  27. Colpaert, J.V. and Van Laere, A., A comparison of the extracellular enzyme activities of two ectomycorrhizal and a leaf-saprotrophic basidiomycete colonizing beech leaf litter, New Phytol., 1996, vol. 134, pp. 133–141.

    Article  CAS  Google Scholar 

  28. Stoutjesdijk, P. and Barkman, J.J., Microclimate, Vegetation, and Fauna, Uppsala: Opulus Press, 1992.

    Google Scholar 

Download references

Funding

This study was supported by the Russian Scientific Foundation, project no. 16-14-10208.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Makarov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, M.I., Kadulin, M.S., Turchin, S.R. et al. The Effect of Vaccinium vitis-idaea on Properties of Mountain-Meadow Soil under Alpine Lichen Heath. Russ J Ecol 50, 337–342 (2019). https://doi.org/10.1134/S1067413619040118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413619040118

Keywords:

Navigation