Skip to main content
Log in

Features of 226Ra, 232Th, 238U Distribution in the Surface Layer of Bottom Sediments in the Northern Part of the Laptev Sea

  • Published:
Radiochemistry Aims and scope

Abstract

The features of the distribution of the 226Ra, 232Th, 238U concentrations in the surface layer of bottom sediments in the northern part of the Laptev Sea are considered. Data are obtained for the bottom sediments of the shelf zone of the sea, the continental slope, and abyssal depths. The concentrations of 226Ra and 232Th varied in the range 17–36.3 and 28.7–38.1 Bq/kg, respectively, and the 238U concentration, within 12.5–38.7 Bq/kg. It is assumed that the enrichment of sediments in 226Ra and 238U with depth is due to the reduction of part of the carbonates containing 226Ra and 238U, followed by the sorption of 226Ra from sea water and the sedimentation of hydrolysis forms of 238U to the bottom. An increase in the 226Ra and 238U concentrations in the sediment with depth in the eastern section, as the concentration of inorganic carbon decreases, is consistent with this assumption. In this case, the correlation of the 226Ra and 238U concentrations with the concentration of inorganic carbon is negative (R = –0.98 and –0.94, respectively). The 232Th concentration correlates with the concentration of organic carbon (R = 0.85). In the area of the outer shelf and in the Vilkitsky Strait, the 226Ra, 232Th, and 238U concentrations in the surface layer of sediments depend on the fractional composition of the sediment and change with a change in the fractional ratio. The concentrations of 238U and 232Th correlate with each other (R = 0.84) and with the concentration of inorganic carbon (R = 0.75 and 0.87, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Lyra, M.E., Andreou, M., Georgantzoglou, A., Kordolaimi, S., Lagopati, N., Ploussi, A., Salvara, A.-L.,and Vamvakas, I., Curr. Med. Imaging, 2013, vol. 9, no. 1, pp. 51–75. https://doi.org/10.2174/1573405611309010008

    Article  CAS  Google Scholar 

  2. Debnath, S., and Babu, M.N., Asian J. Res. Pharm. Sci., 2015, vol. 5, no. 4, pp. 221–226. https://doi.org/10.5958/2231-5659.2015.00032.6

    Article  Google Scholar 

  3. Zielhuis, S.W., Nijsen, J.F.W., Seppenwoolde, J.H., Zonnenberg, B.A., Bakker, C.J.G., Hennink, W.E., van Rijk, P.P., and van het Schip, A.D., Curr. Med. Chem. Anticancer Agents, 2005, vol. 5, no. 3, pp. 303–313. https://doi.org/10.2174/1568011053765958

    Article  CAS  PubMed  Google Scholar 

  4. Klaassen, N.J.M., Arntz, M.J., Gil Arranja, A., Roosen, J., and Nijsen, J.F.W., EJNMMI Radiopharm. Chem., 2019, vol. 4, no. 1, ID 19. https://doi.org/10.1186/s41181-019-0066-3

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fricker, S.P., Chem. Soc. Rev., 2006, vol. 35, pp. 524–533. https://doi.org/10.1039/b509608c

    Article  CAS  PubMed  Google Scholar 

  6. Bahrami-Samani, A., Bagheri, R., Jalilian, A.R., Shirvani-Arani, S., Ghannadi-Maragheh, M., and Shamsaee, M., Sci. Pharm., 2010, vol. 78, pp. 423–433. https://doi.org/10.3797/scipharm.1004-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Diniz, M.F., Ferreira, D.M., de Lima, W.G., Pedrosa, M.L., Silva, M.E., de Almeida Araujo, S., Sampaio, K.H., Ribeiro de Campos, T.P., and Siqueira, S.L., Rep. Pract. Oncol. Radiother., 2017, vol. 22, pp. 319–326. https://doi.org/10.1016/j.rpor.2017.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  8. Marcon, L., Gehan, H., Khoshnevis, M., Marmuse, L., Carozzo, C., Louis, C., Ponce, F., and Tillement, O., J. Nanomed. Nanotechnol., 2017, vol. 8, no. 5, ID 1000460. https://doi.org/10.4172/2157-7439.1000460

    Article  CAS  Google Scholar 

  9. Bult, W., Seevinck, P.R., Krijger, G.C., Visser, T., Kroon-Batenburg, L.M., Bakker, C.J., Hennink, W.E., van het Schip, A.D., and Nijsen, J.F., Pharm. Res., 2009, vol. 26, pp. 1371–1378. https://doi.org/10.1007/s11095-009-9848-8

    Article  CAS  PubMed  Google Scholar 

  10. Yavari, K., Mazidi, M., Bagher, K., Asl, R.S., and Maragheh, M.G., J. Pharm. Pharmacol., 2013, vol. 1, pp. 25–35. http://www.davidpublisher.com/Public/uploads/Contribute/5508f77aed390.pdf.

    Google Scholar 

  11. Loftsson, T. and Duchene, D., Int. J. Pharm., 2007, vol. 329, pp. 1–11. https://doi.org/10.1016/j.ijpharm.2006.10.044

    Article  CAS  PubMed  Google Scholar 

  12. Brewster, M.E. and Loftsson, T., Adv. Drug Deliv. Rev., 2007, vol. 59, pp. 645–666. https://doi.org/10.1016/j.addr.2007.05.012

    Article  CAS  PubMed  Google Scholar 

  13. Cheirsilp, B., and Rakmai, J., Biol. Eng. Med., 2016, vol. 2, pp. 1–6. https://doi.org/10.15761/BEM.1000108

    Article  Google Scholar 

  14. Szejtli, J., Chem. Rev., 1998, vol. 98, pp. 1743–1754. https://doi.org/10.1021/cr970022c

    Article  CAS  PubMed  Google Scholar 

  15. Vyas, A., Saraf, S., and Saraf, S., J. Incl. Phenom. Macrocycl. Chem., 2008, vol. 62, pp. 23–42. https://doi.org/10.1007/s10847-008-9456-y

    Article  CAS  Google Scholar 

  16. Viernsteina, H., and Wolschann, P., Sci. Asia, 2020, vol. 46, pp. 254–262. https://doi.org/10.2306/scienceasia1513-1874.2020.048

    Article  CAS  Google Scholar 

  17. Pitha, J., Milecki, J., Fales, H., Pannell, L., and Uekama, K., Int. J. Pharm., 1986, vol. 29, no. 1, pp. 73–82. https://doi.org/10.1016/0378-5173(86)90201-2

    Article  CAS  Google Scholar 

  18. Gould, S. and Scott, R.C., Food Chem. Toxicol., 2005, vol. 43, pp. 1451–1459. https:/10.1016/j.fct.2005.03.007

    Article  CAS  PubMed  Google Scholar 

  19. Devi, L.B., and Mandal, A.B., RSC Adv., 2013, vol. 3, pp. 5238–5253. https://doi.org/10.1039/C3RA23014G

    Article  CAS  Google Scholar 

  20. Lu, Y., Liu, S., Zhao, Y., Zhu, L., and Yu, S., Acta Pharm., 2014, vol. 64, no. 2, pp. 211–222. https://doi.org/10.2478/acph-2014-0012

    Article  CAS  PubMed  Google Scholar 

  21. Maixner, J. and Bartůněk, V., Powder Diffr., 2012, vol. 27, no. 3, pp. 203–207. https://doi.org/10.1017/S0885715612000334

    Article  CAS  Google Scholar 

  22. Tačić, A., Savić, I., Nikolić, V., Savić, I., Ilić-Stojanović, S., Ilić, D., Petrović, S., Popsavin, M., and Kapor, A., J. Incl. Phenom. Macrocycl. Chem., 2014, vol. 80, pp. 113–124. https://doi.org/10.1007/s10847-014-0410-x

    Article  CAS  Google Scholar 

  23. Jun, S.W., Kim, M.S., Kim, J.S., Park, H.J., Lee, S., Woo, J.S., and Hwang, S.J., Eur. J. Pharm. Biopharm., 2007, vol. 66, no. 3, pp. 413–421. https://doi.org/10.1016/j.ejpb.2006.11.013

    Article  CAS  PubMed  Google Scholar 

  24. Nicolescu, C., Aramă, C., Monciu, and C.M., Farmacia, 2010, vol. 58, pp. 78–88. https://pdfs.semanticscholar.org/6489/78db04598ae8a16535a09fe97ec02c0c4a0f.pdf.

    CAS  Google Scholar 

  25. Zhang, X., Wu, D., Lai, J., Lu, Y., Yin, Z., and Wu, W., J. Pharm. Sci., 2009, vol. 98, pp. 665–675. https://doi.org/10.1002/jps.21453

    Article  CAS  PubMed  Google Scholar 

  26. Duan, Z., Song, M., Li, T., Liu, S., Xu, X., Qin, R., He, C., Wang, Y., Xu L., and Zhang, M., RSC Adv., 2018, vol. 8, pp. 31542–31554. https://doi.org/10.1039/c8ra06171h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Balboul, B.A.A.A., Powder Technol., 2000, vol. 107, pp. 168–174. https://doi.org/10.1016/S0032-5910(99)00183-7

    Article  CAS  Google Scholar 

  28. Garnero, C., Aiassa, V., and Longhi, M., J. Pharma. Biomed. Anal., 2012, vol. 63, pp. 74–79. https://doi.org/10.1016/j.jpba.2012.01.011

    Article  CAS  Google Scholar 

  29. El Maghraby, G.M. and Alomrani, A.H., J. Drug Deliv. Sci. Technol., 2010, vol. 20, pp. 385–389. https://doi.org/10.1016/S1773-2247(10)50063-7

    Article  CAS  Google Scholar 

  30. Memisoglu-Bilensoy, E. and Hincal, A.A., Int. J. Pharm., 2006, vol. 311, pp. 203–208. https://doi.org/10.1016/j.ijpharm.2005.12.013

    Article  CAS  PubMed  Google Scholar 

  31. Girek, T., Shin, D.H., and Lim, S.T., Carbohydr. Polym. 2000, vol. 42, pp. 59–63. https://doi.org/10.1016/S0144-8617(99)00138-1/S1066362222060133

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank A.A. Polukhin for providing data on the biohydrochemistry of the Laptev Sea, A.V. Dubinin for helpful advice in preparing the article, and D.F. Budko for help in the determination of rare earth elements.

Funding

The study was carried out within the framework of the State Assignment of the Ministry of Science and Higher Education of the Russian Federation (project 0128-2021-0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Domanov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Radiokhimiya, No. 6, pp. 591–600, December, 2022 https://doi.org/10.31857/S0033831122060132

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domanov, M.M., Gagarin, V.I. & Bukhanov, M.V. Features of 226Ra, 232Th, 238U Distribution in the Surface Layer of Bottom Sediments in the Northern Part of the Laptev Sea. Radiochemistry 64, 766–775 (2022). https://doi.org/10.1134/S1066362222060145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362222060145

Keywords:

Navigation