Skip to main content
Log in

Gamma Dose Rate and Annual Effective Dose Equivalent in Uttara Kannada District, Karnataka, India

  • Published:
Radiochemistry Aims and scope

Abstract

This study reports the gamma absorbed dose rate (GADR) in 88 locations within five different geological regions of Uttara Kannada district. The measurements were made using a UR-705 environmental radiation dosimeter. The outdoor gamma absorbed dose rate varies from 44.5 to 220.0 nGy h–1 with the mean value of 78.0 nGy h–1, which is 1.3 times higher than the international average value of 59 nGy h–1. The indoor gamma absorbed dose rate varies from 57.3 to 242.5 nGy h–1 with an average of 90.0 nGy h–1, which is slightly higher than the world average of 84 nGy h–1 as suggested by UNSCEAR-2000. The estimated dose rate varies with the geological background and soil type. The total AEDE ranges from 0.3 to 1.38 mSv year–1 with an average of 0.53 mSv year–1. The average total AEDE is lower than the dose limit of 1 mSv year–1 for public, suggested by ICRP-1991.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Sources and Effects of Ionizing Radiation, New York: United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR), 2000.

  2. Environmental Radiation Measurement, Report no. 50 of National Council on Radiation Protection and Measurements (NCRP), Washington, DC: NCRP, 1977.

  3. Sources and Effects of Ionizing Radiation: Report to General Assembly, with Scientific Annexes, New York: UNSCEAR, 1993.

  4. Kannan, V., Rajan, M.P., Iyengar, M.A.R., and Ramesh, R., Appl. Radiat. Isot., 2002, vol. 57, p. 109. https://doi.org/10.1016/S0969-8043(01)00262-7

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Z., Int. Congr. Ser., 2002, vol. 1225, p. 39.

    Article  CAS  Google Scholar 

  6. Narayana, Y., Somashekarappa, H.M., Radhakrishna, A.P., Balakrishna, K.M., and Siddappa, K., J. Radiol. Prot., 1994, vol. 14, p. 257. https://doi.org/10.1093/rpd/ncx185

    Article  CAS  Google Scholar 

  7. Siddappa, K., Balakrishna, K.M., Radhakrishna, A.P., Somashekarappa, H.M., and Narayana, Y., Final Project Report to BRNS, Mangalore: Mangalore Univ., 1994.

    Google Scholar 

  8. Karunakara, N., Somashekarappa, H.M., Avadhani, D.N., Mahesh, H.M., Narayana, Y., and Siddappa, K., Health Phys., 2001, vol. 80, p. 165. https://doi.org/10.1097/00004032-200101000-00006

    Article  Google Scholar 

  9. Narayana, Y. and Rajashekara, K.M., J. Environ. Radioact., 2010, vol. 101, p. 468. https://doi.org/10.1016/j.jenvrad.2010.06.015

    Article  CAS  PubMed  Google Scholar 

  10. Sannappa, J., Suresh, S., Rangaswamy, D.R., and Srinivasa, E., J. Radioanal. Nucl. Chem., 2019, vol. 323, p. 1459. https://doi.org/10.1007/s10967-019-06812-2

    Article  CAS  Google Scholar 

  11. Nambi, K.S.V., Bapat, V.N., David, M., Sundram, V.K., Sunta, C.M., and Soman, S.D., Radiat. Prot. Dosim., 1987, vol. 24, p. 27.

    Google Scholar 

  12. Prasad, Y., Prasad, G., Gussian, G.S., Badoni, M., and Ramola, R.C., in Proc.: Mitigation of Pollutions for Clean Environment (NSE-15), 2007, p. 492.

  13. Rajendra, P.N.R., Srihersha, K.L., Raghavayya, M., and Chandrashekara, M.S., Iran. J. Radiat. Res., 2008, vol. 6, p. 59.

    Google Scholar 

  14. Ningappa, C., Sannappa, J., Chandrashekara, M.S., and Paramesh, L., Indian J. Phys., 2009, vol. 83, p. 12. https://doi.org/10.1007/s12648-009-0102-3

    Article  Google Scholar 

  15. Kebwaro, J., Rathore, I., Hashim, N., and Mustapha, A., Int. J. Phys. Sci., 2006, vol. 6, p. 3105.

    Google Scholar 

  16. El-Taher, A., Radiat. Prot. Dosim., 2011, vol. 145, p. 405. https://doi.org/10.1093/rpd/ncq425

    Article  CAS  Google Scholar 

  17. Sanusi, M.S.M., Ramli, A.T., Gabdo, H.T., Garba, N.N., Heryanshah, A., Wagiran, H., and Said, M.N., J. Environ. Radioact., 2014, vol. 135, p. 67. https://doi.org/10.1016/j.jenvrad.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  18. Habu, T.A., Wan, M.S.W.H., Muneer, A.S., Abubakar, S.A., and Ahmad, T.R., Radiat. Phys. Chem., 2017, vol. 140, p. 167. https://doi.org/10.1016/j.radphyschem.2017.01.023

    Article  CAS  Google Scholar 

  19. Tan, V.L., Kazumasa, I., Hiroshi, T., Makoto, F., Moeko, A., Linh, D., Hung, N., Siriprapa, S., and Masahiro, F., Radiat. Prot. Dosim., 2018, vol. 179, p. 18. https://doi.org/10.1093/rpd/ncx185

    Article  CAS  Google Scholar 

  20. Mohammad, R.K., Nahid, S., Nasrin, F., and Attarilar, A., Radiat. Prot. Dosim., 2019, vol. 184, p. 189. https://doi.org/10.1093/rpd/ncy198

    Article  CAS  Google Scholar 

  21. Lorna, J.P., Christopher, M., Fe Dela, C., Juanario, O., Paolo, T.C., and Kazuki, I., Radiat. Prot. Dosim., 2019, vol. 184, p. 351. https://doi.org/10.1093/rpd/ncz092

    Article  CAS  Google Scholar 

  22. Nagaraju, K.M., Chandrashekara, M.S., Pruthvi Rani, K.S., and Paramesh, L., Radiat. Prot. Environ., 2012, vol. 35, p. 73. https://doi.org/10.4103/0972-0464.112344

    Article  Google Scholar 

  23. Narayan, Y., Somashekarappa, H.M., Karunakara, N., Avadhani, D.N., Mahesh, H.M., and Siddappa, K., Health Phys., 2000, vol. 80, p. 24.

    Article  Google Scholar 

  24. Rangaswamy, D.R., Srinivasa, E., Srilatha, M.C., and Sannappa, J., Radiat. Prot. Environ., 2015, vol. 38, p. 154. https://doi.org/10.4103/0972-0464.176152

    Article  Google Scholar 

  25. Srinivasa, E., Rangaswamy, D.R., Suresh, S., Umesh Reddy, K., and Sannappa, J., Radiat. Prot. Environ., 2018, vol. 41, p. 20. https://doi.org/10.4103/rpe.RPE_15_18

    Article  Google Scholar 

  26. Manoj, K.J., Santosh, K.S., Shweta, S., and Arun, A., J. Radioanal. Nucl. Chem., 2018, vol. 317, p. 387. https://doi.org/10.1007/s10967-018-5846-9

    Article  CAS  Google Scholar 

  27. ICRP Publication 103, Ann. ICRP, 2007, 37(2–4)-F.

  28. ICRP Publication 60, Oxford: Pergamon, 1991.

Download references

ACKNOWLEDGMENTS

The authors are sincerely grateful to M.P.E Society’s, Dr. M.P. Karki, Institute of Excellence and Research, Honnavar, for providing an instrumentation facility to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sannappa.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, S., Rangaswamy, D.R., Sannappa, J. et al. Gamma Dose Rate and Annual Effective Dose Equivalent in Uttara Kannada District, Karnataka, India. Radiochemistry 63, 672–681 (2021). https://doi.org/10.1134/S1066362221050179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362221050179

Keywords:

Navigation