Skip to main content
Log in

Separation of Long-Lived Radionuclides on QMA Light Anion-Exchange Cartridge in Manufacture of Radiopharmaceutical Preparations Based on 18F

  • Published:
Radiochemistry Aims and scope

Abstract

Sorption and elution on a QMA light anion-exchange cartridge of long-lived radionuclides formed in [18O]H2O under irradiation of a niobium target with Havar alloy input window on a Cyclone 18/9 HC cyclotron have been studied. It was shown that more than 90% of 51Cr and 7Be radionuclides from irradiated [18O]H2O is sorbed on the QMA light anion-exchange cartridge. 55,56, 57,58Co, 52,54Mn, and 57Ni radionuclides pass through the cartridge and are delivered into a flask with [18O]H2O for subsequent regeneration. It was found that about 30% of cobalt and manganese radioisotopes and also ~7% of chromium are present in the irradiated [18O]H2O in solid particles >5 μm in size. It was found that the main dose-providing chromium, manganese, cobalt, and beryllium radionuclides are hardly desorbed from QMA light in the elution of [18F]fluoride with a K2CO3 complex with cryptand [2.2.2] in an acetonitrile–water mixture, which provides a purification of these radionuclide impurities, with their amount reduced by a factor of 30–100. Nb, Ta, Re, and Tc radioisotopes are quantitatively sorbed on the anion-exchange cartridge and are mostly (up to 80% of the total activity) eluted together with [18F]fluoride into a reactor for synthesis. The observed fundamental aspects of the distribution of long-lived radionuclides are explained with consideration for their chemical forms of existence in aqueous solutions and the properties of the sorbents used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bowden, L., Vintró, L.L., Mitchell, P.I., et al., Appl. Radiat. Isot., 2009, vol. 67, no. 2, pp. 248–255.

    Article  CAS  Google Scholar 

  2. Brinkevich, D.I., Brinkevich, S.D., Baranovskii, O.A., et al., Med. Fizika, 2018, no. 1, pp. 80–88.

    Google Scholar 

  3. Dziel, T., Tyminski, Z., and Sobczyk, K., Appl. Radiat. Isot., 2016, vol. 109, no. 2, pp. 242–246.

    Article  CAS  Google Scholar 

  4. Mochizuki, S., Ogata, Y., Hatano, K., et al., J. Nucl. Sci. Technol., 2006, vol. 43, no. 4, pp. 348–353.

    Article  CAS  Google Scholar 

  5. Ito, S., Sakane, H., and Deji, S., Appl. Radiat. Isot., 2006, vol. 64, no. 3, pp. 298–305.

    Article  CAS  Google Scholar 

  6. Kilian, K., Pegier, M., Pecal, A., and Pyrzynska, K., J. Radioanal. Nucl. Chem., 2016, vol. 307, no. 2, pp. 1037–1043.

    Article  CAS  Google Scholar 

  7. Köhler, M., Degering, D., Zessin, J., et al., Appl. Radiat. Isot., 2013, vol. 81, pp. 268–271.

    Article  Google Scholar 

  8. Marengo, M., Lodi, F., Magi, S., et al., Appl. Radiat. Isot., 2008, vol. 66, no. 3, pp. 295–302.

    Article  CAS  Google Scholar 

  9. Avila-Rodriguez, M.A., Wilson, J.S., and McQuarrie, S.A., Appl. Radiat. Isot., 2008, vol. 66, no. 12, pp. 1775–1780.

    Article  CAS  Google Scholar 

  10. Brinkevich, S.D., Krot, V.O., Brinkevich, D.I., et al., Radiochemistry, 2019, vol. 61, no. 4, pp. 483–490. https://doi.org/10.1134/S1066362219040131

    Article  CAS  Google Scholar 

  11. Tylets, P.V., Tugai, O.V., Krot, V.O., et al., Izv. NAN Belarusi. Ser. Khim. Nauk, 2018, no. 3, pp. 359–368.

    Google Scholar 

  12. Nishijima, K., Kuge, Y., Tsukamoto E. et. al., Appl. Radiat. Isot., 2002, vol. 57, no. 1, pp. 43–49.

    Article  CAS  Google Scholar 

  13. Brinkevich, D.I., Maliborskii, A.Ya., and Brinkevich, S.D., Yadern. Fizika Inzhiniring, 2019, vol. 9, no. 4, pp. 402–408.

    Google Scholar 

  14. Ivanyukovich, A.A., Soroka, S.A., and Krot, V.O., Med. Fizika, 2018, vol. 80, no. 4, pp. 59–65.

    Google Scholar 

  15. Browne, E., Firestone, R.B., and Shirley, V.S., Table of Radioactive Isotopes, New York: Wiley, 2016.

    Google Scholar 

  16. Lur’e, Yu.Yu., Raschetnye i spravochnye tablitsy dlya khimikov (Calculation and Reference Tables for Chemists), Moscow: Ripol Klassik, 2013.

    Google Scholar 

  17. Al Rayyes, A.H., Nukleonika, 2010, vol. 55, no. 3, pp. 401–405.

    CAS  Google Scholar 

  18. Schueller, M.J., Alexoff, D.L., and Schlyer, D.J., Nucl. Instrum. Meth. Phys. Res. B, 2007, vol. 261, pp. 795–799.

    Article  CAS  Google Scholar 

  19. Azhazha, V.M., Desnenko, V.A., Ozhigov, L.S., et al., Vopr. Atom. Nauki Tekhniki. Ser.: Fizika Radiats. Povrezhdenii Radiats. Materialovedenie, 2009, no. 4–2, pp. 241–246.

    Google Scholar 

  20. Ivanov, S.N., Porollo, S.I., and Dvoryashin, A.M., Vopr. Atom. Nauki Tekhniki. Ser.: Materialovedenie Novye Materialy, 2006, no. 2, pp. 222–228.

    Google Scholar 

  21. Didyk, A.Yu., Latyshev, S.V., Semina, V.K., et al., Pis’ma v ZhTF, 2000, vol. 26, no. 17, pp. 1–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Krot.

Ethics declarations

The authors state that they have no conflict of interest.

Additional information

Translated from Radiokhimiya, No. 2, pp. 193–200, February, 2021 https://doi.org/10.31857/S003383112102012X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krot, V.O., Brinkevich, S.D., Brinkevich, D.I. et al. Separation of Long-Lived Radionuclides on QMA Light Anion-Exchange Cartridge in Manufacture of Radiopharmaceutical Preparations Based on 18F. Radiochemistry 63, 235–242 (2021). https://doi.org/10.1134/S1066362221020144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362221020144

Keywords:

Navigation