Skip to main content
Log in

Radiation Stability of Magnesium Phosphate Ceramic Under γ-Irradiation: Formation of Hydrogen and Peroxides

  • Published:
Radiochemistry Aims and scope

Abstract

Radiation stability of MgHPO4‧3H2O magnesium-phosphate ceramic was studied. It was shown that the effect of γ-radiation from 60Co s accompanied by the formation of hydrogen. Oxygen is recorded in trace amounts (less than 1% relative to hydrogen). At a dose of 4–5 MGy, the yield of hydrogen is approximately 0.055 ± 0.005 molecule/100 eV. At larger doses, the accumulation of hydrogen reaches the stationary level. It was found that the “oxidizing component,” hydrogen peroxide, formed in the radiolysis of hydrate water reacts in all probability with magnesium to give magnesium peroxide, MgO2. The irradiation has no noticeable effect on the mechanical strength of the magnesium-phosphate compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Cement-Based Materials for Nuclear Waste Storage, Bart, F., Cau-di-Coumes, C., Frizon, F., and Lorente, S., Eds., Berlin: Springer, 2013. https://doi.org/10.1007/978-1-4614-3445-0 https://doi.org/10.1007/978-1-4614-3445-0

    Book  Google Scholar 

  2. Sobolev, I.A., Korenkov, I.P., Khomchik, L.M., and Prokazova, L.M., Okhrana okruzhayushchei sredy pri obezvrezhivanii radioaktivnykh otkhodov (Environment Protection in Detoxication of Radioactive Wastes), Moscow: Energoatomizdat, 1989.

    Google Scholar 

  3. Singh, D., Barber, D., Wagh, A, Strain, R., and Tlustochowicz, M., Proc. Waste Management Conf. WM'98, Tucson, AZ, 1998.

  4. Wagh, A.S., Strain, R., Jeong, S.Y., Reed, D., Krause, T., and Singh, D., J. Nucl. Mater., 1999, vol. 265, p. 295.

    Article  CAS  Google Scholar 

  5. US Patent no. 5 645 518 (G21F 9/20, 1997.07.08).

  6. Vinokurov, S.E., Kulyako, Yu.M., Slyunchev, O.M., and Myasoedov, B.F., J. Nucl Mater., 2009, vol. 385, no. 1, p. 189.

    Article  CAS  Google Scholar 

  7. Vinokurov, S.E., Kulyako, Yu.M., Slyunchev, O.M., Rovnyi, S.I., Vag, A.S., Malonei, M.D., and Myasoedov, B.F., Radiochemistry, 2009, vol. 51, no. 1, p. 65. https://doi.org/10.1134/S1066362209010159

    Article  CAS  Google Scholar 

  8. Vinokurov, S.E., Kulikova, S.A., and Gromyak, I.N., Usp. Khim. Khim. Tekhnol., 2016, vol. 30, no. 6 (175), p. 106.

    Google Scholar 

  9. Vinokurov, S.E., Kulikova, S.A., Krupskaya, V.V., and Myasoedov, B.F., Radioakt. Otkhody, 2018, no. 2 (3), p. 105.

    Google Scholar 

  10. Yang, J.H., Shin, J.M., Lee, C.H., Heo, C.M., Jeon, M.K., and Kang, K.H., J. Radioanal. Nucl. Chem., 2013, vol. 295, p. 211.

    Article  CAS  Google Scholar 

  11. Bouniol, P. and Thouvenot, P., J. Chim. Phys., 1997, vol. 94, p. 410.

    Article  CAS  Google Scholar 

  12. Ershov, B.G., Yurik, T.K., Bykov, G.L., gordeev, A.V., Kozlov, P.V., Slyunchev, O.M., Rovnyi, S.I., and Glagolenko, Yu.V., Vopr. Radiats. Bezop., 2008, no. 1, p. 3.

    Google Scholar 

  13. Bykov, G.L., Gordeev, A.V., Yurik, T.K., and Ershov, B.G., Khim. Vys. Energ., 2008, vol. 42, no. 3, p. 1.

    Google Scholar 

  14. Abdelrazig, B., Sharp, J., and El-Jazairi, B., Cement Concr. Res., 1988, vol. 18, no. 3, p. 415.

    Article  CAS  Google Scholar 

  15. Boistelle, R. and Abbona, F., J. Cryst. Growth, 1981, vol. 54, p. 275.

    Article  CAS  Google Scholar 

  16. Pikaev, A.K., Sovremennaya radiatsionnaya khimiya, Radioliz gazov i zhidkostei (Modern Radiation Chemistry: Radiolysid of Gases and Fluids), Moscow: Nauka, 1986.

    Google Scholar 

  17. Kotov, A.G. and gromov, V.V., Radiatsionnaya fizika i khimiya geterogennykh system (Radiation Physics and Chemistry of Heterogeneous Systems), Moscow: Energoatomizdat, 1988.

    Google Scholar 

  18. Ershov, B.G. and gordeev, A.V., Radiat. Phys. Chem., 2008, vol. 77, p. 928.

    Article  CAS  Google Scholar 

  19. Vol’nov, I.I., Peroxides, Superoxides and Ozonides of Alkali and Alkaline Earth Metals, Berlin: Springer, 2012. https://doi.org/10.1007/978-1-4684-8252-2

    Book  Google Scholar 

Download references

Funding

The study was in part supported by the ministry of Science and Higher Education of the Russian Federation (project no. AAAA-A16-116121410087-6) and in part by the Russian Foundation for Basic Research (project no. 19-03-00501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Ershov.

Ethics declarations

The authors state that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, G.L., Ershov, V.A. & Ershov, B.G. Radiation Stability of Magnesium Phosphate Ceramic Under γ-Irradiation: Formation of Hydrogen and Peroxides. Radiochemistry 62, 406–410 (2020). https://doi.org/10.1134/S1066362220030145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362220030145

Keywords:

Navigation