Skip to main content
Log in

Progress in the Development of Track Radiometers for Radon Measurements

  • Published:
Radiochemistry Aims and scope

Abstract

Radiometers based on solid-state nuclear track detectors, developed for radon measurements in the past two decades, are considered. Devices for measuring the volume activity of radon, thoron, and their decay products and the rate of radon exhalation from various media (soil, water, building materials) are discussed. Significant progress in the development of radiometers for simultaneous measurements of the radon and thoron concentrations and for direct measurements of the concentrations of their decay products is noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yakovleva, V.S., Methods and devices for monitoring α-, β-, and γ-radiation fields and radon in the soil-atmosphere system, Doctoral (Eng.) Dissertation, Tomsk, 2013.

    Google Scholar 

  2. Fleisher, R.L., Price, P.B., and Walker, R.M., Nuclear Tracks in Solids. Principles and Applications, Berkeley: Univ. of California Press, 1975.

    Google Scholar 

  3. Fleisher, R.L., Price, P.B., and Walker, R.M., Ann. Rev. Nucl. Sci., 1965, vol. 15, pp. 1–28.

    Article  Google Scholar 

  4. Benton, E.V., Proc. 11th Int. Conf. on SSNTD (Bristol, 1981), Fowler, P.H. and Clapham, V.M., Eds., Oxford: Pergamon, 1982, pp. 629–640.

    Google Scholar 

  5. Nikolaev, V.A., Appar. Met. Radiats. Izmer., 1998, no. 2, pp. 16–27.

    Google Scholar 

  6. Nikolaev, V.A. and Ilić, R., Radiat. Meas., 1999, vol. 30, pp. 1–13.

    Article  CAS  Google Scholar 

  7. Durrani, S.A. and Bull, R.K., Solid State Nuclear Track Detection: Principles, Methods, and Applications, Harwell: Pergamon, 1987.

    Google Scholar 

  8. Nikolaev, V.A., Tverdotel’nye trekovye detektory v ra-diatsionnykh issledovaniyakh (Solid State Nuclear Track Detectors in Radiation Research), St. Petersburg: Politekh. Univ., 2012.

    Google Scholar 

  9. Nikolaev, V.A., Solid State Nuclear Track Detectors in Radiation Research, St. Petersburg: Polytechnic Univ., 2015.

    Google Scholar 

  10. Radon Measurements by Etched Track Detectors, Durrani, S. and Ilić, R., Eds., London: World Scientific, 1997.

    Google Scholar 

  11. Nikolaev, V.A., Radionuclides and Heavy Metals in Environment, Frontasyeva, M.V. et al., Eds., Kluwer, 2001, pp. 349–360.

    Book  Google Scholar 

  12. Nuclear Track Detectors: Design, Methods, and Applications, Sidorov, M. and Ivanov, O., Eds., New York: Nova Science, 2009.

    Google Scholar 

  13. Tsuruta, T., Nakanishi, Y., and Shimba, H., Radiat. Meas., 2011, vol. 46, no. 1, pp. 59–63.

    Article  CAS  Google Scholar 

  14. Sohrabi, M. and Ramezani, V., Radiat. Prot. Dosim., 2015, vol. 164, no. 3, pp. 244–251.

    Article  CAS  Google Scholar 

  15. Sohrabi, M, Khodadadi, F., and Hakimi, A., Radiat. Meas., 2015, vol. 75, pp. 39–14.

    Article  CAS  Google Scholar 

  16. Sohrabi, M, Hakimi, A., and Soltani, Z., Radiat. Prot. Dosim., 2016, vol. 171, no. 4, pp. 470–476.

    CAS  Google Scholar 

  17. Su, C.S., Radiat. Prot. Dosim., 1990, vol. 34, nos. 1–4, pp. 51–54.

    Article  CAS  Google Scholar 

  18. Tripathy, S.P., Kolekar, R.V., Sunil, C, et al., Nucl. Instrum. Meth. Phys. Res. A, 2010, vol. 612, no. 2, pp. 421–426.

    Article  CAS  Google Scholar 

  19. Csordás, A., Bátor, G., Horvath, D., et al., Radiat. Meas., 2016, vol. 87, pp. 1–7.

    Article  CAS  Google Scholar 

  20. De Cicco, F., Pugliese, M, Roca, V., and Sabbarese, C., Radiat. Prot. Dosim., 2014, vol. 162, no. 3, pp. 388–393.

    Article  CAS  Google Scholar 

  21. Aljarrah, A., Al-Khaleel, O.D., Al-Khateeb, H.M., et al., Radiat. Meas., 2012, vol. 47, no. 7, pp. 537–540.

    Article  CAS  Google Scholar 

  22. Simakin, I.S., Vlasova, I.E., and Kalmykov, S.N., Radiat. Meas., 2013, vol. 50, pp. 212–217.

    Article  CAS  Google Scholar 

  23. Khayat, O., Ghergherehchi, M, Afarideh, H., et al., Radiat. Meas., 2013, vol. 50, pp. 249–252.

    Article  CAS  Google Scholar 

  24. Zylstra, A.B., Frenje, J.A., Seguin, F.H., et al., Nucl. Instrum. Meth. Phys. Res. A, 2012, vol. 681, pp. 84–90.

    Article  CAS  Google Scholar 

  25. Khayat, O., Mohammadnia, M, and Afarideh, H., in Proc. 26th Int. Conf. on Solid State Nuclear Track Detectors: Abstracts, Kobe, 2014, paper CP–8.

    Google Scholar 

  26. Ghergherehchi, M, Jong Seo Chai, Yoon Sang Kim, and Seung eol Kim, in Proc. 26th Int. Conf. on Solid State Nuclear Track Detectors: Abstracts, Kobe, 2014, paper MP–3.

    Google Scholar 

  27. De Pin, G., Dulla, S., and Esposito, M., Radiat. Meas., 2016, vol. 89, pp. 1–7.

    Article  CAS  Google Scholar 

  28. Ab Azar, N., Babakhani, A.A., and Sepanloo, K., Radiat. Meas., 2016, vol. 91, pp. 36–43.

    Article  CAS  Google Scholar 

  29. Stanic, D., Sovilj, M.P., Miklavcic, I., and Radolic, V., Radiat. Meas., 2017, vol. 106, pp. 591–594.

    Article  CAS  Google Scholar 

  30. Franci, D., Aureli, T., and Cardellini, F., Radiat. Prot. Dosim., 2016, vol. 172, no. 4, pp. 496–500.

    Article  CAS  Google Scholar 

  31. Fleisher, R.L. and Mogro-Campero, A., Proc. 11th Int. Conf. on SSNTD (Bristol, 1981), Fowler, P.H. and Clap-ham, V.M., Eds., Oxford: Pergamon, 1982, pp. 501–512.

    Google Scholar 

  32. Calamosca, M, Penzo, S., and Gualdrini, G., Radiat. Meas., 2003, vol. 36, nos. 1–6, pp. 221–224.

    Article  CAS  Google Scholar 

  33. Yu, K.N., Nikezic, D., Ng, F.M.F., and Leung, J.K.C., Radiat. Meas., 2005, vol. 40, nos. 2–6, pp. 560–568.

    Article  CAS  Google Scholar 

  34. Pressyanov, D.S., Radiat. Meas., 2011, vol. 46, no. 3, pp. 357–361.

    Article  CAS  Google Scholar 

  35. Palacios, D., Palacios, F., Sajo-Bohus, L., et al., Radiat. Meas., 2008, vol. 43, suppl. 1, pp. S435–S439.

    Article  CAS  Google Scholar 

  36. Calamosca, M. and Penzo, S., Radiat. Meas., 2009, vol. 44, nos. 9–10, pp. 1013–1018.

    Article  CAS  Google Scholar 

  37. Eappen, K.P., in 25th Int. Conf. on Nuclear Tracks in Solids: Abstracts, Puebla Pue (Mexico), 2011, paper ID 050, p. 44.

    Google Scholar 

  38. Caresana, M., Ferrarini, M., Garlati, L., and Parravici-ni, A., Radiat. Meas., 2010, vol. 45, no. 2, pp. 183–189.

    Article  CAS  Google Scholar 

  39. Caresana, M., Ferrarini, M., Garlati, L., and Parravici-ni, A., Radiat. Meas., 2011, vol. 46, no. 10, pp. 1160–1167.

    Article  CAS  Google Scholar 

  40. Franci, D., Aureli, T., and Cardellini, F., Radiat. Prot. Dosim., 2015, vol. 167, no. 4, pp. 425–428.

    Article  CAS  Google Scholar 

  41. Bajwa, B.S., Singh Parminder, Singh Prabhjot, et al., Radiat. Prot. Dosim., 2016, vol. 168, no. 4, pp. 553–560.

    Article  CAS  Google Scholar 

  42. Amrane, M., Oufni, L., and Misdaq, M.A., Radiat. Prot. Dosim., 2014, vol. 162, no. 3, pp. 400–409.

    Article  CAS  Google Scholar 

  43. Moreno, V., Font, L., Baixeras, C, et al., in Proc. 26th Int. Conf. on Solid State Nuclear Track Detectors: Abstracts, Kobe, 2014, paper JP–18.

    Google Scholar 

  44. Nikolaev, V.A., Vorobiev, LB., Gevirz, V.B., et al., Radiat. Meas., 1995, vol. 25, nos. 1–4, pp. 641–642.

    Article  CAS  Google Scholar 

  45. Denisov, A.E., Nikolaev, V.A., and Vorobjev, L.B., Radiat. Meas., 2005, vol. 40, nos. 2–6, pp. 389–391.

    Article  CAS  Google Scholar 

  46. Tommasino, L., Cherousti, D.E., Seidel, J.L., and Mon-nin, M., Nucl. Tracks, 1986, vol. 12, nos. 1–6, pp. 681–684.

    Article  CAS  Google Scholar 

  47. Bochicchio, F., Forastiere, F., Farchi, S., et al., Radiat. Meas., 2003, vol. 36, nos. 1–6, pp. 205–210.

    Article  CAS  Google Scholar 

  48. Caresana, M. and Ferrarini, M., Radiat. Meets., 2010, vol. 45, no. 8, pp. 911–915.

    Article  CAS  Google Scholar 

  49. Miles, J.C.H., Algar, R.A., Howarth, C.B., et al., Results of the 1995 European Commission Intercomparison of Passive Radon Detectors, Brussels: European Commission, Directorate, General XII, EUR 16949 EN, 1996.

    Google Scholar 

  50. Amgarou, K., Font, L.I., and Baixeras, C., Nucl. Instrum. Meth. Phys. Res. A., 2003, vol. 506, nos. 1–2, pp. 186–198.

    Article  CAS  Google Scholar 

  51. Yu, K.N., Leung, S.Y.Y., Nikezic, D., and Leung, J.K.C., Radiat. Meas., 2008, vol. 43, suppl. 1, pp. S357-S363.

  52. Yu, K.N. and Nikezic, D., Nuclear Track Detectors: Design, Methods and Applications, Sidorov, M. and Ivanov, O., Eds., New York: Nova Science, 2009, pp. 107–131.

    Google Scholar 

  53. Nikezic, D. and Yu, K.N., Nucl. Instrum. Meth. Phys. Res. A, 2010, vol. 613, no. 2, pp. 245–250.

    Article  CAS  Google Scholar 

  54. Csige, I. and Csegzi, S., Radiat. Meas., 2001, vol. 34, nos. 1–6, pp. 437–440.

    Article  CAS  Google Scholar 

  55. Dwivedi, K.K., Mishra, R., and Tripathy, S.P., Radiat. Meas., 2005, vol. 40, nos. 2–6, pp. 621–624.

    Article  CAS  Google Scholar 

  56. Espinosa, G., Golzarri, J.I., Martinez, T., et al., Radiat. Meas., 2005, vol. 40, nos. 2–6, pp. 646–649.

    Article  CAS  Google Scholar 

  57. Zhuo, W., Tokonami, S., Yonehara, H., and Yama-da, Y., Rev. Sci. Instrum., 2002, vol. 73, pp. 2877–2881.

    Article  CAS  Google Scholar 

  58. Tokonami, S., Takahashi, H., Kobayashi, Y., et al., Rev. Sci. Instrum., 2005, vol. 76, pp. 113 505-1-113 505-5.

  59. Sorimachi, A., Tokonami, S., Omori, Y., and Ishika-wa, T., Radiat. Meas., 2012, vol. 47, no. 6, pp. 438–142.

    Article  CAS  Google Scholar 

  60. Sahoo, B.K., Sapra, B.K., Kanse, S.D., et al., Radiat. Meas., 2013, vol. 58, pp. 52–60.

    Article  CAS  Google Scholar 

  61. Ramola, R.C., Prasad, M., Rawat, M., et al., Radiat. Prot. Dosim., 2015, vol. 167, nos. 1–3, pp. 23–28.

    Article  CAS  Google Scholar 

  62. Mishra, R. and Mayya, Y.S., Radiat. Meas., 2008, vol. 43, pp. 1408–1416.

    Article  CAS  Google Scholar 

  63. Stojanovska, Z., Zunic, Z.S., Bossew, P., et al., Radiat. Prot. Dosim., 2014, vol. 162, nos. 1–2, pp. 152–156.

    Article  CAS  Google Scholar 

  64. Mishra, R., Rout, R., Prajith, R., et al., Radiat. Prot. Dosim., 2016, vol. 171, no. 2, pp. 181–186.

    Article  CAS  Google Scholar 

  65. Harley, N., Chittaporn, P., Medora, R., and Merrill, R., Radiat. Prot. Dosim., 2010, vol. 140, no. 3, pp. 357–362.

    Article  CAS  Google Scholar 

  66. Bi, L., Tschiersch, J., Meisenberg, O., et al., Radiat. Prot. Dosim., 2011, vol. 145, nos. 2–3, pp. 288–294.

    Article  CAS  Google Scholar 

  67. Fan, D., Zhuo, W., Chen, B., et al., Radiat. Prot. Dosim., 2015, vol. 167, nos. 1–3, pp. 121–125.

    Article  CAS  Google Scholar 

  68. Cosma, C., Van Deynse, A., and Poffijn, A., Radiat. Meas., 1999, vol. 31, nos. 1–6, pp. 351–354.

    Article  CAS  Google Scholar 

  69. Tommasino, L., Tommasino, M.C., and Viola, P., Radiat. Meas., 2009, vol. 44, nos. 9–10, pp. 719–723.

    Article  CAS  Google Scholar 

  70. Tommasino, L., Chen, J., Falcomer, R., et al., Radiat. Prot. Dosim., 2017, vol. 177, nos. 1–2, pp. 12–15.

    Article  CAS  Google Scholar 

  71. Tommasino, L. and Espinosa, G., Radiat. Meas., 2013, vol. 50, pp. 22–25.

    Article  CAS  Google Scholar 

  72. Soares, C.J., Alencar, I., Guedes, S., et al., Radiat. Meas., 2013, vol. 50, pp. 246–248.

    Article  CAS  Google Scholar 

  73. Imme, G., Morelli, D., Aranzulla, M., et al., Radiat. Meas., 2013, vol. 50, pp. 253–257.

    Article  CAS  Google Scholar 

  74. Malinowska, A., Jaskola, M., Korman, A., and Szyd-lowski, A., in Proc. 26th Int. Conf. on Solid State Nuclear Track Detectors: Abstracts, Kobe, 2014, paper C–3.

    Google Scholar 

  75. Santos, N.F., Iunes, P.J., Paulo, S.R., et al., Radiat. Meas., 2010, vol. 45, no. 7, pp. 823–826.

    Article  CAS  Google Scholar 

  76. El Ghazaly, M., Radiat. Eff Defects Solids, 2012, vol. 167, pp. 421–127.

    Article  CAS  Google Scholar 

  77. Azooz, A.A., Al-Nia’emi, S.H., and Al-Jubbori, M.A., Radiat. Meas., 2012, vol. 47, no. 1, pp. 67–72.

    Article  CAS  Google Scholar 

  78. Hermsdorf, D. and Mahmood, A., Radiat. Meas., 2013, vol. 58, pp. 101–106.

    Article  CAS  Google Scholar 

  79. Somogyi, G., Hafez, A.H., Hunyadi, I., and Szilag-ly, M.T., Nucl. Track Radiat. Meas., 1986, vol. 12, pp. 701–704.

    Article  CAS  Google Scholar 

  80. Kabrt, F., Baumgartner, A., Stietka, M., and Marin-ger, F.J., Radiat. Prot. Dosim., 2017, vol. 177, nos. 1–2, pp. 26–30.

    Article  CAS  Google Scholar 

  81. Jagadeesha, B.G. and Narayana, Y., Radiochemistry, 2017, vol. 59, no. 1, pp. 104–110.

  82. Ridha, A.A. and Hasan, H.A., Radiochemistry, 2017, vol. 59, no. 2, pp. 208–214.

    Article  CAS  Google Scholar 

  83. Nikolaev, V.A., Radiochemistry, 2012, vol. 54, no. 1, pp. 5–21.

    Article  CAS  Google Scholar 

  84. El-Farrash, A.H., Yousef, H.A., and Hafez, A.F., Radiat. Meas., 2012, vol. 47, no. 8, pp. 644–648.

    Article  CAS  Google Scholar 

  85. Hafez, A.F., Hussein, A.S., and Rasheed, N.M., Appl. Radiat. Isot., 2001, vol. 54, pp. 291–298.

    Article  CAS  PubMed  Google Scholar 

  86. Sohrabi, M. and Khodadadi, F., Radiat. Prot. Dosim., 2015, vol. 164, no. 4, pp. 537–541.

    Article  CAS  Google Scholar 

  87. Lively, R.S. and Ney, E.P., Health Phys., 1987, vol. 52, no. 4, pp. 411–415.

    Article  CAS  PubMed  Google Scholar 

  88. Pressyanov, D.S., Radiat. Prot. Dosim., 2012, vol. 149, no. 4, pp. 464–468.

    Article  CAS  Google Scholar 

  89. Pressyanov, D., Dimitrova, I., Georgiev, S., and Mitev, K., Radiat. Meas., 2013, vol. 50, pp. 218–222.

    Article  CAS  Google Scholar 

  90. Dimitrova, I., Mitev, K., Pressyanov, D., et al., Radiat. Meas., 2011, vol. 46, no. 1, pp. 119–126.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Nikolaev.

Additional information

Conflict of Interest

The author declares that he has no conflict of interest.

Russian Text © The Author(s), 2019, published in Radiokhimiya, 2019, Vol. 61, No. 4, pp. 286–296.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, V.A. Progress in the Development of Track Radiometers for Radon Measurements. Radiochemistry 61, 396–407 (2019). https://doi.org/10.1134/S1066362219040027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362219040027

Keywords

Navigation