Skip to main content
Log in

Synthesis and crystal-chemical features of two new uranyl chromates with the structures derived from [(UO2)(T6+O4)(H2O) n ]0 (T = Cr6+, S6+, Se6+, n = 0–2)

  • Published:
Radiochemistry Aims and scope

Abstract

Two new chromates of hexavalent uranium, [C3H10N][(UO2)(CrO4)(NO3)] (1) and [C2H8N]2[(UO2)2· (CrO4)2(Cr2O7)](H2O)2 (2), were prepared by a combination of hydrothermal synthesis and isothermal evaporation. Compounds 1 and 2 crystallize in the triclinic system, space group \(P\overline 1 \); a = 7.245(3), b = 7.329(3), c = 11.359(4) Å; α = 85.549(6)°, β = 82.547(6)°, γ = 80.174(6)° for 1; a = 7.2063(4), b = 11.5107(7), c = 16.0980(11) Å; α = 70.736(4)°, β = 80.246(4)°, γ = 71.759(4)° for 2. The structures were solved by the direct methods and refined to R 1 = 0.064 [for 1495 reflections with Fo > 4σ(Fo)] and 0.047 [for 4529 reflections with Fo > 4σ(Fo)] for 1 and 2, respectively. The crystal structure of 1 is based on [(UO2)(CrO4)(NO3)] chains between which the isopropylamine molecules are arranged. In the structure of 2, the amine and H2O molecules are localized between the [(UO2)2(CrO4)2(Cr2O7)]2– layers. The uranyl chromate complexes described are derived from [(UO2)(TO4)(H2O) n ]0 chains (T = Cr6+, S6+, Se6+, n = 0–2). A brief review of uranyl compounds with tetrahedral TO 2–4 anions (T = Cr6+, S6+, Se6+) and similar structural organization is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herbst, R.S., Law, J.D., Todd, T.A., et al., Sep. Sci. Technol., 2003, vol. 38, pp. 2685–2692.

    Article  CAS  Google Scholar 

  2. Muster, T.H., Hughes, A.E., Furman, S.A., et al., Electrochim. Acta, 2009, vol. 54, pp. 3402–3411.

    Article  CAS  Google Scholar 

  3. Evans, H.T., Science, 1963, vol. 141, pp. 154–158.

    Article  CAS  Google Scholar 

  4. Structural Chemistry of Inorganic Actinide Compounds, Krivovichev, S.V., Burns, P.C., and Tananaev, I.G., Eds., Amsterdam: Elsevier, 2007, p. 494.

  5. Brandenburg, N.P. and Loopstra, B.O., Cryst. Struct. Commun., 1973, vol. 2, pp. 243–246.

    CAS  Google Scholar 

  6. Krivovichev, S.V. and Burns, P.C., Z. Kristallogr., 2003, vol. 218, pp. 568–574.

    CAS  Google Scholar 

  7. Krivovichev, S.V., Tananaev, I.G., Kahlebnerg, V., and Myasoedov, B.F., Radiochemistry, 2006, vol. 48, no. 3, pp. 213–216.

    Article  CAS  Google Scholar 

  8. Siidra, O.I., Nazarchuk, E.V., Suknotova, A.N., et al., Inorg. Chem., 2013, vol. 52, pp. 4729–4735.

    Article  CAS  Google Scholar 

  9. Doran, M.B., Norquist, A.J., and O’Hare, D., Acta Crystallogr., Sect. E, 2003, vol. 59, pp. m373–m375.

  10. Rogers, R.D., Bond, A.H., Hipple, W.G., et al., Inorg. Chem., 1991, vol. 30, pp. 2671–2679.

    Article  CAS  Google Scholar 

  11. Mikhailov, Yu.N., Mistryukov, V.E., Serezhkina, L.B., et al., Zh. Neorg. Khim., 1995, vol. 40, pp. 1288–1240.

    CAS  Google Scholar 

  12. Serezhkina, L.B. and Trunov, V.K., Zh. Neorg. Khim., 1989, vol. 34, pp. 968–970.

    CAS  Google Scholar 

  13. Serezhkin, V.N. and Trunov, V.K., Kristallografiya, 1981, vol. 26, pp. 301–304.

    CAS  Google Scholar 

  14. Van den Putten, N. and Loopstra, B.O., Cryst. Struct. Commun., 1974, vol. 3, pp. 377–380.

    Google Scholar 

  15. Zalkin, A., Ruben, H., and Templeton, D.H., Inorg. Chem., 1978, vol. 17, pp. 3701–3702.

    Article  CAS  Google Scholar 

  16. Serezhkin, V.N., Soldatkina, M.A., and Efremov, V.A., Zh. Strukt. Khim., 1981, vol. 22, pp. 171–174.

    CAS  Google Scholar 

  17. Norquist, A.J., Doran, M.B., Thomas, P.M., and O’Hare, D., Dalton Trans., 2003, no. 10, pp. 1168–1175.

    Article  Google Scholar 

  18. Soldatkina, M.A., Serezhkin, V.N., and Trunov, V.K., Zh. Strukt. Khim., 1981, vol. 22, pp. 146–150.

    CAS  Google Scholar 

  19. Toivonen, J. and Niinisto, L., Inorg. Chem., 1983, vol. 22, pp. 1557–1559.

    Article  CAS  Google Scholar 

  20. Andreev, G.B., Antipin, M.Yu., Fedoseev, A.M., and Budantseva, N.A., Crystallogr. Rep., 2001, vol. 46, pp. 383–384.

    Article  Google Scholar 

  21. Serezhkin, V.N., Soldatkina, M.A., Efremov, V.A., and Trunov, V.K., Koord. Khim., 1981, vol. 7, pp. 629–633.

    CAS  Google Scholar 

  22. Norquist, A.J., Doran, M.B., and O’Hare, D., Solid State Sci., 2003, vol. 5, pp. 1149–1158.

    Article  CAS  Google Scholar 

  23. Doran, M.B., Norquist, A.J., and O’Hare, D., Acta Crystallogr., Sect. E, 2003, vol. 59, pp. m765–m767.

  24. Ling Jie, Sigmon, G.E., Ward, M., et al., Z. Kristallogr., 2010, vol. 225, pp. 230–239.

    CAS  Google Scholar 

  25. Verevkin, A.G., Vologzhanina, A.V., Serezhkina, L.B., and Serezhkin, V.N., Crystallogr. Rep., 2010, vol. 55, pp. 602–608.

    Article  CAS  Google Scholar 

  26. Krivovichev, S.V. and Burns, P.C., Z. Kristallogr., 2003, vol. 218, pp. 725–732.

    CAS  Google Scholar 

  27. Mikhailov, Yu.N., Gorbunova, Yu.E., Serezhkina, L.B., and Serezhkin, V.N., Russ. J. Inorg. Chem., 1997, vol. 42, pp. 652–656.

    Google Scholar 

  28. Krivovichev, S.V. and Kahlenberg, V., Radiochemistry, 2005, vol. 47, pp. 452–455.

    Article  CAS  Google Scholar 

  29. Krivovichev, S.V. and Kahlenberg, V., Z. Anorg. Allg. Chem., 2005, vol. 631, pp. 739–744.

    Article  CAS  Google Scholar 

  30. Krivovichev, S.V. and Tananaev, I.G., Zh. Sib. Fed. Univ., Khim., 2009, vol. 2, pp. 133–149.

    Google Scholar 

  31. Hennig, C., Kraus, W., Emmerling, F., et al., Inorg. Chem., 2008, vol. 47, pp. 1634–1638.

    Article  CAS  Google Scholar 

  32. Magusin, P.C., Zorin, V.E., Aerts, A., et al., J. Phys. Chem. B, 2005, vol. 109, pp. 22767–22774.

    Article  CAS  Google Scholar 

  33. Peister, S.A., Schrader, W., and Schüth, F., J. Am. Chem. Soc., 2006, vol. 128, pp. 4310–4317.

    Article  Google Scholar 

  34. Slater, B., Ohsuna, T., Liu, Z., and Terasaki, O., Faraday Disc., 2007, vol. 136, pp. 125–141.

    Article  CAS  Google Scholar 

  35. Taulelle, F., Pruski, M., Amoureux, J.P., et al., J. Am. Chem. Soc., 1999, vol. 121, pp. 12148–12153.

    Article  CAS  Google Scholar 

  36. Serre, C., Lorentz, C., Taulelle, F., and Ferey, G., Chem. Mater., 2003, vol. 15, pp. 2328–2337.

    Article  CAS  Google Scholar 

  37. Serre, S., Taulelle, F., and Ferey, G., Chem. Commun., 2003, no. 22, pp. 2755–2765.

    Article  Google Scholar 

  38. Walton, R.I., Norquist, A.J., Neeraj, S., et al., Chem. Commun., 2001, no. 19, pp. 1990–1991.

    Article  Google Scholar 

  39. Loiseau, T., Beitone, L., and Millange, F., J. Phys. Chem. B, 2004, vol. 108, pp. 20020–20029.

    Article  CAS  Google Scholar 

  40. Oliver, S., Kuperman, A., and Ozin, G.A., Angew. Chem. Int. Ed., 1998, vol. 37, pp. 46–62.

    Article  CAS  Google Scholar 

  41. Wang, K., Yu, J., Song, Y., and Xu, R., Dalton Trans., 2003, no. 1, pp. 99–103.

    Article  Google Scholar 

  42. Wang, K., Yu, J., Shi, Z., et al., J. Chem. Soc., Dalton Trans., 2001, no. 12, pp. 1809–1812.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Nazarchuk.

Additional information

Original Russian Text © E.V. Nazarchuk, O.I. Siidra, R.A. Kayukov, 2016, published in Radiokhimiya, 2016, Vol. 58, No. 6, pp. 490–495.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarchuk, E.V., Siidra, O.I. & Kayukov, R.A. Synthesis and crystal-chemical features of two new uranyl chromates with the structures derived from [(UO2)(T6+O4)(H2O) n ]0 (T = Cr6+, S6+, Se6+, n = 0–2). Radiochemistry 58, 571–577 (2016). https://doi.org/10.1134/S1066362216060023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362216060023

Keywords

Navigation