Skip to main content
Log in

On the Properties of the Limit Control Sets for a Class of Unstable Linear Systems with Discrete Time and l 1 -Restrictions

  • SYSTEM THEORY AND GENERAL CONTROL THEORY
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

The construction of attainability and controllability sets for linear systems with discrete time and a total constraint on scalar control in the sense of l1-norm is discussed. For classes of linear systems that are not completely controllable and not completely attainable, the limit sets of controllability and attainability are explicitly constructed, respectively. Examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. N. Ibragimov and A. N. Sirotin, “On the problem of optimal speed for the discrete linear system with bounded scalar control on the basis of 0-controllability sets,” Autom. Remote Control 76, 1517 (2015).

    Article  MathSciNet  Google Scholar 

  2. A. I. Propoi, Elements of the Theory of Optimal Discrete Processes (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  3. A. M. Formal’skii and A. N. Sirotin, “Reachability and controllability sets of linear discrete systems,” J. Comput. Syst. Sci. Int. 41, 507 (2002).

    Google Scholar 

  4. A. M. Formalsky and A. N. Sirotin, “On the geometric properties of reachable and controllable sets for linear discrete systems,” J. Optim. Theory Appl. 122 (2), 17–44 (2004).

    Article  MathSciNet  Google Scholar 

  5. A. N. Sirotin, “An exact analytical description of the reachability sets of asymptotically stable linear discrete systems with L 1-norm bounded scalar control,” Vestn. MAI 15, 142-146 (2008).

  6. V. G. Boltyanskii, Optimal Control of Discrete Systems (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  7. D. Tabak and B. C. Kuo, Optimal Control by Mathematical Programming (Prentice-Hall, Englewood Cliffs, NJ, 1971).

    Google Scholar 

  8. S. A. Ashmanov and A. V. Timokhov, Optimization Theory in Problems and Exercises (Nauka, Moscow, 1991) [in Russian].

    MATH  Google Scholar 

  9. U. S. Polovinkin and M. V. Balashov, Elements of Convex and Strongly Convex Analysis (Fizmatlit, Moscow, 2007) [in Russian].

    MATH  Google Scholar 

  10. D. A. Kozorez, M. N. Krasil’shchikov, D. M. Kruzhkov, and K. I. Sypalo, “Autonomous navigation during the final ascent of a spacecraft into the geostationary orbit. Autonomous integrated navigation system concept,” J. Comput. Syst. Sci. Int. 54, 798 (2015).

    Article  Google Scholar 

  11. D. A. Kozorez, M. N. Krasil’shchikov, D. M. Kruzhkov, and K. I. Sypalo, “Integrated navigation system for a space vehicle on a geostationary or highly elliptic orbit operating in the presence of active jam,” J. Comput. Syst. Sci. Int. 52, 468 (2013).

    Article  Google Scholar 

  12. R. T. Rockafellar, Convex Analysis (Princeton Univ. Press, Princeton, 1973).

    MATH  Google Scholar 

  13. P. L. Ul’yanov, A. N. Bakhvalov, M. I. D’yachenko, K. S. Kazaryan, and P. Sifuentes, Real Analysis in Problems (Fizmatlit, Moscow, 2005).

    Google Scholar 

  14. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  15. R. A. Horn and Ch. R. Johnson, Matrix Analysis, 2nd ed. (Cambridge Univ. Press, Cambridge, 2012).

    Book  Google Scholar 

  16. K. Leichtweiß, Konvexe Mengen (Springer, Berlin, 1980).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. N. Ibragimov or A. N. Sirotin.

Ethics declarations

The authors declare that they have no conflicts of interest

APPENDIX

APPENDIX

Proof of the lemma. (i). By definition [8, Chap. 2, § 4, point 1] the set \(\mathcal{D} \subset {{\mathbb{R}}^{n}}\) is called a polyhedron if it can be represented as a set of solutions to a system of a finite number \(m\) of linear inequalities:

$$\mathcal{D} = \left\{ {x \in {{\mathbb{R}}^{n}}:{{x}^{{\text{T}}}}{{a}^{j}} \leqslant {{b}_{j}},{{a}^{j}} \in {{\mathbb{R}}^{n}},j = \overline {1,m} } \right\}.$$

We denote by \({{\mathcal{B}}_{{\mathbb{R}_{1}^{n}}}}\) a closed ball in \({{\mathbb{R}}^{n}}\) with metric l1:

$${{\mathcal{B}}_{{\mathbb{R}_{1}^{n}}}} = \left\{ {x = {{{\left( {{{x}_{1}}, \ldots ,{{x}_{n}}} \right)}}^{{\text{T}}}} \in {{\mathbb{R}}^{n}}:\sum\limits_{i = 1}^n {\left| {{{x}_{i}}} \right| \leqslant 1} } \right\}.$$

The set of \({{\mathcal{B}}_{{\mathbb{R}_{1}^{n}}}}\) is a polyhedron, because

$$\left\{ {x = {{{\left( {{{x}_{1}}, \ldots ,{{x}_{n}}} \right)}}^{{\text{T}}}} \in {{\mathbb{R}}^{n}}:\sum\limits_{i = 1}^n {\left| {{{x}_{i}}} \right| \leqslant 1} } \right\} = \{ x \in {{\mathbb{R}}^{n}}:{{x}^{{\text{T}}}}{{\tilde {a}}^{j}} \leqslant 1,j = \overline {{{{1,2}}^{n}}} \} ,$$
(A.1)

where

$${{\tilde {a}}^{j}} = {{(\tilde {a}_{1}^{j}, \ldots ,\tilde {a}_{n}^{j})}^{{\text{T}}}} \in {{\mathbb{R}}^{n}},\quad \tilde {a}_{i}^{j} \in \left\{ { - 1,1} \right\},\quad i = \overline {1,n} ,\quad j = \overline {{{{1,2}}^{n}}} .$$

Indeed, if for \(\alpha \in \mathbb{R}\) and \(\beta \geqslant 0\), the inequality

$$\left| \alpha \right| \leqslant \beta ;$$

is valid, then we get

$$\alpha \leqslant \beta ,\quad - \alpha \leqslant \beta $$

or

$$ \pm \alpha \leqslant \beta .$$
(A.2)

Further, the reasoning is carried out by induction. Assume k = 1, then from for any \(x \in {{\mathcal{B}}_{{\mathbb{R}_{1}^{n}}}}\), we find

$$\left| {{{x}_{1}}} \right| \leqslant 1 - \sum\limits_{i = 2}^n {\left| {{{x}_{i}}} \right|} .$$
(A.3)

From (A.2) and (A.3), we have

$$ \pm {{x}_{1}} \leqslant 1 - \sum\limits_{i = 2}^n {\left| {{{x}_{i}}} \right|} $$

or

$$\sum\limits_{i = 2}^n {\left| {{{x}_{i}}} \right|} \leqslant 1 \pm {{x}_{1}}.$$

Let us say for an arbitrary \(k = \overline {2,n - 1} \), the following inequality is valid:

$$\sum\limits_{i = k}^n {\left| {{{x}_{i}}} \right|} \leqslant 1 \pm {{x}_{1}} \pm \cdots \pm {{x}_{{k - 1}}} = 1 \pm \sum\limits_{i = 1}^{k - 1} {{{x}_{i}}} .$$
(A.4)

Then,

$$\left| {{{x}_{k}}} \right| \leqslant 1 \pm \sum\limits_{i = 1}^{k - 1} {{{x}_{i}}} - \sum\limits_{i = k + 1}^n {\left| {{{x}_{i}}} \right|} .$$

From (A.2) we obtain

$$\begin{gathered} \pm {{x}_{k}} \leqslant 1 \pm \sum\limits_{i = 1}^{k - 1} {{{x}_{i}}} - \sum\limits_{i = k + 1}^n {\left| {{{x}_{i}}} \right|} , \\ \sum\limits_{i = k + 1}^n {\left| {{{x}_{i}}} \right|} \leqslant 1 \pm \sum\limits_{i = 1}^k {{{x}_{i}}} . \\ \end{gathered} $$
(A.5)

Thus, from statement (A.4), (A.5) follows for k, and the validity of assertion (A.4), for k +1. Therefore, by the principle of mathematical induction, we come to the conclusion that the inequality

$$\sum\limits_{i = 1}^n {\left| {{{x}_{i}}} \right| \leqslant 1} $$

is equivalent to inequality

$$\sum\limits_{i = 1}^n { \pm {{x}_{i}}} \leqslant 1,$$

which coincides with (A.1).

We introduce the matrix \({{A}_{k}} \in {{\mathbb{R}}^{{n \times \left( {k + 1} \right)}}}\) according to the formula

$${{A}_{k}}: = \left( {\left. b \right|\left. {Ab} \right| \cdots \left| {{{A}^{{k - 1}}}b} \right.} \right).$$

Assume

$${{{v}}_{{i + 1}}}: = u\left( {k - 1 - i} \right),\quad i = \overline {0,k - 1} ,\quad {v} = {{\left( {{{{v}}_{1}}, \ldots ,{{{v}}_{k}}} \right)}^{{\text{T}}}} \in t{{\mathcal{B}}_{{\mathbb{R}_{1}^{k}}}} \subset {{\mathbb{R}}^{k}}.$$
(A.6)

Then

$$\sum\limits_{i = 0}^{k - 1} {{{A}^{i}}bu\left( {k - 1 - i} \right)} = \sum\limits_{i = 0}^{k - 1} {{{A}^{i}}b{{v}_{{i + 1}}}} = {{A}_{k}}v.$$

Therefore, we get the representation

$${{\mathcal{Y}}_{t}}\left( k \right) = \left\{ {y \in {{\mathbb{R}}^{n}}:y = {{A}_{k}}{v},\;{v} \in t{{\mathcal{B}}_{{\mathbb{R}_{1}^{k}}}}} \right\} = t{{A}_{k}}{{\mathcal{B}}_{{\mathbb{R}_{1}^{k}}}}.$$

By [12, Theorem 19.3, Chap. IV, § 19], the set \({{\mathcal{Y}}_{t}}\left( k \right)\) is a polyhedron as a linear mapping of a polyhedral convex set.

(i) The set \({{\mathcal{B}}_{{\mathbb{R}_{1}^{k}}}}\) is, by construction, a closed unit ball centered at 0 in the metric space \({{\mathbb{R}}^{k}}\) with metric l1. Therefore, the set \({{\mathcal{B}}_{{\mathbb{R}_{1}^{k}}}}\) is closed, bounded, and symmetric with respect to 0 as the corresponding ball. Finally, statements (ii) follow from the linear representation

$${{\mathcal{Y}}_{t}}\left( k \right) = t{{A}_{k}}{{\mathcal{B}}_{{\mathbb{R}_{1}^{k}}}}.$$

(iii) By the Minkowski-Weyl theorem [8, Chap. 2, § 8, theorem 8.14], the set \({{\mathcal{Y}}_{t}}\left( k \right)\) is a convex polyhedron since it is a bounded polyhedron by (ii).

The following equality is valid

$$\operatorname{conv} ( \pm b, \pm Ab, \ldots , \pm {{A}^{{k - 1}}}b) = \operatorname{conv} (0, \pm b, \pm Ab, \ldots , \pm {{A}^{{k - 1}}}b);$$

and therefore the following representation is correct:

$$\begin{gathered} \operatorname{conv} ( \pm b, \pm Ab, \ldots , \pm {{A}^{{k - 1}}}b) \\ \, = \left\{ {y \in {{\mathbb{R}}^{n}}:y = \sum\limits_{i = 0}^{k - 1} {{{A}^{i}}b{{\lambda }_{{i + 1}}}} - \sum\limits_{i = 0}^{k - 1} {{{A}^{i}}b{{\mu }_{{i + 1}}}} ,\sum\limits_{i = 1}^k {\left( {{{\lambda }_{i}} + {{\mu }_{i}}} \right)} \leqslant 1,{{\lambda }_{i}},{{\mu }_{i}} \geqslant 0,i = \overline {1,k} } \right\}. \\ \end{gathered} $$
(A.7)

Indeed, we get

$$\begin{gathered} \operatorname{conv} ( \pm b, \pm Ab, \ldots , \pm {{A}^{{k - 1}}}b) = \operatorname{conv} (0, \pm b, \pm Ab, \ldots , \pm {{A}^{{k - 1}}}b) \\ \, = \left\{ {y \in {{\mathbb{R}}^{n}}:y = 0 \cdot \left( {{{\lambda }_{0}} + {{\mu }_{0}}} \right) + \sum\limits_{i = 0}^{k - 1} {{{\lambda }_{{i + 1}}}{{A}^{i}}b} + \sum\limits_{i = 0}^{k - 1} {{{\mu }_{{i + 1}}}( - {{A}^{i}}b)} ,} \right. \\ \end{gathered} $$
$$\begin{gathered} \left. {\left( {{{\lambda }_{0}} + {{\mu }_{0}}} \right) + \sum\limits_{i = 1}^k {\left( {{{\lambda }_{i}} + {{\mu }_{i}}} \right)} = 1,{{\lambda }_{i}},{{\mu }_{i}} \geqslant 0,i = \overline {0,k} } \right\} \\ \, = \left\{ {y \in {{\mathbb{R}}^{n}}:y = \sum\limits_{i = 0}^{k - 1} {{{\lambda }_{{i + 1}}}{{A}^{i}}b} + \sum\limits_{i = 0}^{k - 1} {{{\mu }_{{i + 1}}}( - {{A}^{i}}b)} ,} \right. \\ \end{gathered} $$
$$\begin{gathered} \left. {\sum\limits_{i = 1}^k {\left( {{{\lambda }_{i}} + {{\mu }_{i}}} \right)} = 1 - \left( {{{\lambda }_{0}} + {{\mu }_{0}}} \right),{{\lambda }_{i}},{{\mu }_{i}} \geqslant 0,i = \overline {0,k} } \right\} \\ \, = \left\{ {y \in {{\mathbb{R}}^{n}}:y = \sum\limits_{i = 0}^{k - 1} {{{\lambda }_{{i + 1}}}{{A}^{i}}b} + \sum\limits_{i = 0}^{k - 1} {{{\mu }_{{i + 1}}}( - {{A}^{i}}b)} ,} \right. \\ \end{gathered} $$
$$\left. {\sum\limits_{i = 1}^k {\left( {{{\lambda }_{i}} + {{\mu }_{i}}} \right)} \leqslant 1,{{\lambda }_{i}},{{\mu }_{i}} \geqslant 0,i = \overline {1,k} } \right\}.$$

The proof of assertion (iii) is sufficient for t = 1; thus, we denote

$$\mathcal{Y}\left( k \right): = {{\mathcal{Y}}_{1}}\left( k \right).$$

The following inclusion is valid:

$$\mathcal{Y}\left( k \right) \subset \operatorname{conv} ( \pm b, \pm Ab, \ldots , \pm {{A}^{{k - 1}}}b).$$
(A.8)

Indeed, if

$$y \in \mathcal{Y}\left( k \right),$$

then

$$y = \sum\limits_{i = 0}^{k - 1} {{{A}^{i}}b{{v}_{{i + 1}}}} ,\quad \sum\limits_{i = 1}^k {\left| {{{v}_{i}}} \right|} \leqslant 1.$$
(A.9)

Let us assume

$${{\lambda }_{i}} = \max \left\{ {0, - {{{v}}_{i}}} \right\},\quad {{\mu }_{i}} = \max \left\{ {0,{{{v}}_{i}}} \right\},$$

then

$${{\lambda }_{i}} + {{\mu }_{i}} = \left| {{{{v}}_{i}}} \right|,\quad {{\lambda }_{i}},{{\mu }_{i}} \geqslant 0,\quad {{\lambda }_{i}} \cdot {{\mu }_{i}} = 0,\quad i = \overline {1,k} .$$

Hence,

$$y = \sum\limits_{i = 0}^{k - 1} {{{A}^{i}}b{{{v}}_{{i + 1}}}} = - \sum\limits_{i = 0}^{k - 1} {{{\lambda }_{{i + 1}}}{{A}^{i}}b} + \sum\limits_{i = 0}^{k - 1} {{{\mu }_{{i + 1}}}{{A}^{i}}b} ,\quad \sum\limits_{i = 1}^k {\left( {{{\lambda }_{i}} + {{\mu }_{i}}} \right)} \leqslant 1,\quad {{\lambda }_{i}},{{\mu }_{i}} \geqslant 0.$$

By (A.7) we obtain

$$y \in \operatorname{conv} ( \pm b, \pm Ab, \ldots , \pm {{A}^{{k - 1}}}b).$$

We now show that the following reverse inclusion is true:

$$\operatorname{conv} ( \pm b, \pm Ab, \ldots , \pm {{A}^{{k - 1}}}b) \subset \mathcal{Y}\left( k \right).$$
(A.10)

Indeed, assume \(y \in \operatorname{conv} ( \pm b, \pm Ab, \ldots , \pm {{A}^{{k - 1}}}b)\), then the decomposition

$$y = - \sum\limits_{i = 0}^{k - 1} {{{\lambda }_{{i + 1}}}{{A}^{i}}b} + \sum\limits_{i = 0}^{k - 1} {{{\mu }_{{i + 1}}}{{A}^{i}}b} ,\quad \sum\limits_{i = 1}^k {\left( {{{\lambda }_{i}} + {{\mu }_{i}}} \right)} \leqslant 1,\quad {{\lambda }_{i}},{{\mu }_{i}} \geqslant 0.$$

Let us put

$${{v}_{i}} = {{\mu }_{i}} - {{\lambda }_{i}}.$$

Then, the following equality is valid:

$$y = \sum\limits_{i = 0}^{k - 1} {\left( {{{\mu }_{{i + 1}}} - {{\lambda }_{{i + 1}}}} \right){{A}^{i}}b} = \sum\limits_{i = 0}^{k - 1} {{{v}_{{i + 1}}}{{A}^{i}}b} ;$$

and also,

$$\sum\limits_{i = 1}^k {\left| {{{v}_{i}}} \right|} = \sum\limits_{i = 1}^k {\left| {{{\mu }_{i}} - {{\lambda }_{i}}} \right|} = \sum\limits_{i = 1}^k {\left( {{{\mu }_{i}} + {{\lambda }_{i}}} \right)} \leqslant 1.$$

This means that by definition

$$y \in \mathcal{Y}\left( k \right).$$

From (A.8) and (A.10), the required assertion (iii) follows.

(iv) Since by construction \(\mathcal{Y}\left( k \right)\) is a nonempty convex set in \({{\mathbb{R}}^{n}}\) and \(0 \in {{\mathcal{Y}}_{t}}\left( k \right)\), by assertion (ii) from [8, Chap. 3, § 7, point 7, theorem 7.14], it follows that \(0 \in \operatorname{ri} {{\mathcal{Y}}_{t}}\left( k \right)\). By condition (1.3) we have \(\operatorname{aff} {{\mathcal{Y}}_{t}}\left( k \right) = {{\mathbb{R}}^{n}}\) and \(\operatorname{ri} {{\mathcal{Y}}_{t}}\left( k \right) = \operatorname{int} {{\mathcal{Y}}_{t}}\left( k \right)\), which proves the claim.

The proofs of statements (v), (vi), and (vii) are obvious.

The lemma is proved.

Proof of the theorem. By assertion (iii) of the lemma, we have

$${{\mathcal{Y}}_{t}}\left( n \right) = t\operatorname{conv} ( \pm b, \pm Ab, \ldots , \pm {{A}^{{n - 1}}}b).$$

Then from (1.3) and the lemma we deduce that the set \({{\mathcal{Y}}_{t}}\left( n \right)\) is a symmetric bounded convex set for which \(0 \in \operatorname{int} {{\mathcal{Y}}_{t}}\left( n \right)\).

Let us construct a sequence of vectors \({{\{ {{A}^{k}}b\} }_{{k \in \mathbb{N}}}}\). Then there is a number \(K \in \mathbb{N}\) such that

$${{A}^{k}}b \in {{\mathcal{Y}}_{t}}\left( n \right)\quad {\text{for}}\quad k \geqslant K.$$
(A.11)

Indeed, by condition (1.4) we have \(\rho \left( A \right) < 1\), then [15, Theorem 5.6.12] the following equality is valid:

$$\mathop {\lim }\limits_{k \to \infty } {{A}^{k}} = O.$$

Therefore,

$$\mathop {\lim }\limits_{k \to \infty } {{A}^{k}}b = 0,$$
$$\mathop {\lim }\limits_{k \to \infty } {{\left\| {{{A}^{k}}b} \right\|}_{{{{\mathcal{Y}}_{t}}\left( n \right)}}} = 0.$$

By definition of the convergence of a numerical sequence \({{\left\{ {{{{\left\| {{{A}^{k}}b} \right\|}}_{{{{\mathcal{Y}}_{t}}\left( n \right)}}}} \right\}}_{{k \in \mathbb{N}}}}\), there is a natural K such that

$${{\left\| {{{A}^{k}}b} \right\|}_{{{{\mathcal{Y}}_{t}}\left( n \right)}}} \leqslant 1\quad {\text{at}}\quad k \geqslant K.$$

Now from (3.3) and (3.4), we obtain the required inclusion (A.11).

For arbitrary vectors \({{a}^{1}}, \ldots ,{{a}^{m}},c \in {{\mathbb{R}}^{n}}\), \(m \geqslant 1\), the equality

$$\operatorname{conv} \left\{ {{{a}^{1}}, \ldots ,{{a}^{m}},c} \right\} = \operatorname{conv} \left\{ {{{a}^{1}}, \ldots ,{{a}^{m}}} \right\},$$
(A.12)

if

$$c \in \operatorname{conv} \left\{ {{{a}^{1}}, \ldots ,{{a}^{m}}} \right\}.$$
(A.13)

Indeed, by the definition of a convex hull, the inclusion

$$\operatorname{conv} \left\{ {{{a}^{1}}, \ldots ,{{a}^{m}}} \right\} \subset \operatorname{conv} \left\{ {{{a}^{1}}, \ldots ,{{a}^{m}},c} \right\}.$$

However, (A.13) also implies the chain of inclusions

$$\begin{gathered} \operatorname{conv} \{ {{a}^{1}}, \ldots ,{{a}^{m}},c\} \subset \operatorname{conv} \{ \operatorname{conv} \{ {{a}^{1}}, \ldots ,{{a}^{m}}\} \cup \operatorname{conv} \{ c\} \} \\ \, = \operatorname{conv} \{ \operatorname{conv} \{ {{a}^{1}}, \ldots ,{{a}^{m}}\} \cup c\} = \operatorname{conv} \{ \operatorname{conv} \{ {{a}^{1}}, \ldots ,{{a}^{m}}\} \} = \operatorname{conv} \{ {{a}^{1}}, \ldots ,{{a}^{m}}\} . \\ \end{gathered} $$

We finally arrive at equality (A.12).

By point (iii) of the lemma, for \(k \geqslant K\)

$$\begin{gathered} {{\mathcal{Y}}_{t}}\left( k \right) = t\operatorname{conv} \left( { \pm b, \pm Ab, \ldots , \pm {{A}^{K}}b, \pm {{A}^{{K + 1}}}b, \ldots , \pm {{A}^{k}}b} \right) \\ \, = t\operatorname{conv} \left( { \pm b, \pm Ab, \ldots , \pm {{A}^{K}}b} \right) = {{\mathcal{Y}}_{t}}\left( K \right), \\ \end{gathered} $$

insofar as

$$~{{A}^{k}}b \in {{\mathcal{Y}}_{t}}\left( n \right) \subset {{\mathcal{Y}}_{t}}\left( K \right)\quad {\text{for}}\quad k \geqslant K.$$

Here equality (A.12) is used. Therefore, by point (v) of the lemma, we conclude

$${{\mathcal{Y}}_{t}}\left( n \right) \subset \cdots \subset {{\mathcal{Y}}_{t}}\left( K \right) = {{\mathcal{Y}}_{t}}\left( {K + 1} \right) = \cdots ,$$

which proves equality (2.1).

The theorem is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibragimov, D.N., Osokin, A.V., Sirotin, A.N. et al. On the Properties of the Limit Control Sets for a Class of Unstable Linear Systems with Discrete Time and l 1 -Restrictions . J. Comput. Syst. Sci. Int. 61, 467–484 (2022). https://doi.org/10.1134/S1064230722040104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230722040104

Navigation